Applications of Artificial Intelligence

Fakultät

Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Version

Version 1 vom 17.07.2025.

Modulkennung

44M0509

Niveaustufe

Master

Unterrichtssprache

Englisch

ECTS-Leistungspunkte und Benotung

5.0

Häufigkeit des Angebots des Moduls

nur Wintersemester

Dauer des Moduls

1 Semester

 

 

Kurzbeschreibung

In this seminar, students learn to understand the transformative power of AI across various domains. This course demystifies how AI operates and its role in solving complex, real-world problems. By exploring a range of AI use cases, students will gain insights into the technology's potential, limitations, and the ethical and legal considerations that accompany its implementation. Through collaborative hands-on work, exploration and group presentations, this seminar not only deepens the understanding of AI's mechanics but also encourages critical thinking about its implications in our rapidly evolving world. This module is tailored for those who seek to grasp the essence of AI's influence in their respective fields, preparing them for a future where AI's presence is increasingly significant.

Lehr-Lerninhalte

Definition, overview, and classification of AI

Fundamentals of machine learning and neural networks

AI use cases in various domains

Current developments in the field of AI

Potential paths for the future of AI

Gesamtarbeitsaufwand

Der Arbeitsaufwand für das Modul umfasst insgesamt 150 Stunden (siehe auch "ECTS-Leistungspunkte und Benotung").

Lehr- und Lernformen
Dozentengebundenes Lernen
Std. WorkloadLehrtypMediale UmsetzungKonkretisierung
25SeminarPräsenz-
Dozentenungebundenes Lernen
Std. WorkloadLehrtypMediale UmsetzungKonkretisierung
25Veranstaltungsvor- und -nachbereitung-
50Arbeit in Kleingruppen-
25Literaturstudium-
25Referatsvorbereitung-
Benotete Prüfungsleistung
  • Referat (mit schriftlicher Ausarbeitung) oder
  • Klausur oder
  • mündliche Prüfung
Unbenotete Prüfungsleistung
  • regelmäßige Teilnahme
Bemerkung zur Prüfungsart

The standard examination form is a presentation/report; deviations from this will be announced in the first four weeks after the start of lectures.

Ungraded: Regular participation in the seminars

Prüfungsdauer und Prüfungsumfang

presentation/report: ca. 20–30-minute presentation with 5–10 page written analysis

Empfohlene Vorkenntnisse

As prerequisites for this seminar, students are encouraged to embrace an open-minded attitude towards learning new concepts and should not hesitate to engage with technical and IT-related content, as this will be crucial for a comprehensive understanding of the applications of artificial intelligence.

Wissensverbreiterung

Students can explain the term artificial intelligence, recognizing its multidisciplinary nature and citing definitions from different perspectives

Students are familiar with key sub-fields of artificial intelligence, understanding their distinct roles and applications.

Students can identify and differentiate between various machine learning strategies, such as supervised, unsupervised, and reinforcement learning, understanding their unique methodologies and use cases.

Students can articulate examples of AI applications within their field of study, illustrating how AI solves specific problems and discussing the potential impact.

Students explain the role of AI prediction in the decision-making process.

Nutzung und Transfer

Students utilize available AI tools and interfaces to build, evaluate, and refine solutions for selected use cases, focusing on understanding the tool's capabilities and limitations.

Students apply effective prompting techniques and other interaction strategies to utilize AI models efficiently, learning to tailor inputs for optimal outputs.

Students apply AI concepts to design new solutions to real-world problems in their domain, demonstrating the ability to translate theoretical knowledge into practical solutions.

Kommunikation und Kooperation

Students develop skills in collaborative project work, including research, analysis, and presentation, focusing on AI-related topics.

Literatur

The list of recommended literature for the seminar will be provided at the beginning of the semester, ensuring that the most current and relevant resources are included for your study and reference.

Verwendbarkeit nach Studiengängen

  • Land Use Transformation
    • Land Use Transformation M.Sc. (01.03.2026)

  • Angewandte Nutztierwissenschaften
    • Angewandte Nutztierwissenschaften M.Sc. (01.09.2025)

  • Angewandte Pflanzenwissenschaften
    • Angewandte Pflanzenwissenschaften M.Sc. (01.09.2025)

  • Agrar- und Lebensmittelwirtschaft
    • Agrar- und Lebensmittelwirtschaft M.Sc. (01.09.2025)

    Modulpromotor*in
    • Meseth, Nicolas
    Lehrende
    • Meseth, Nicolas