

Entwicklung von Verfahren zur Steigerung des Regenerationspotenzials der Böden von Rückegassen

Aus dem Projekt: RÜWOLA "Rückegassen als Feinerschließungssysteme im Wald – Optimierung durch natürliche Regeneration und technische Maßnahmen unter Berücksichtigung der Belange von Naturschutz und Landschaftsplanung"

Hier: Forschungsbericht zum Teilprojekt 5:"

Interdisziplinäres Verbundprojekt der Hochschule Osnabrück und der HAWK Hildesheim/ Holzminden/ Göttingen

Laufzeit: 01.01.2012 - 31.05.2017

Kontakt: hc.fruend@hs-osnabrueck.de gaertig@hawk-hhg.de

Impressum

Detaillierter Bericht (Langfassung) zu Teilprojekt 5 im Rahmen des Interdisziplinären Verbundprojekts der Hochschule Osnabrück und der HAWK Hildesheim/ Holzminden/ Göttingen.

Projekttitel

Rückegassen als Feinerschließungssysteme im Wald – Optimierung durch natürliche Regeneration und technische Maßnahmen unter Berücksichtigung der Belange von Naturschutz und Landschaftsplanung

Projektlaufzeit

Januar 2012 bis Mai 2017

Herausgeber

Prof. Dr. Heinz-Christian Fründ i.R. (Sprecher), Hochschule Osnabrück, Fakultät Agrarwissenschaften & Landschaftsarchitektur, Am Krümpel 31, 49090 Osnabrück, hc.fruend@hs-osnabrueck.de

Prof. Dr. Thorsten Gaertig (stellvertretender Sprecher), HAWK - Hochschule für Angewandte Wissenschaft und Kunst, Fakultät Ressourcenmanagement, Büsgenweg 1a, 37077 Göttingen, Tel. 0551 5032-171, Telefax 0551 5032-299, gaertig@hawk-hhg.de

Redaktion und Layout

Dipl.-Ing. (FH) Audrey Averdiek M.Sc. Bodennutzung und Bodenschutz Prof. Dr. Heinz-Christian Fründ

Inhalt

1	Einle	Pitung	4
2	Ziels	etzung TP 5	5
3	Unte	ersuchungsgebiet	8
	3.1	Geographische und geologische Einordnung des Untersuchungsgebiets	8
	3.2	Klimabedingungen im Untersuchungsgebiet	10
	3.3	Bestandsbeschreibung der Abteilung 1052a	10
	3.4	Forstliche Standortstypen und Reliefform der Probefläche	10
	3.5	Kleinräumige Standortunterschiede innerhalb der Versuchsfläche	12
	3.5.2	1 Hangneigung der Versuchsgassen	12
	3.5.2	2 Mächtigkeit der Lössdecke	13
	3.5.3	3 Steingehalt	14
	3.5.4	1 Trockenrohdichte	15
	3.5.5	5 Bodenart und Schrumpfungsverhalten	15
	3.5.6	6 Baumfreie Schneisen	16
4	Mat	erial und Methoden	17
	4.1	Anlegen der Gassen	17
	4.1.3	1 Anlegen der Maßnahmenvarianten	17
	4.1.2	2 Übersicht der Rückegassen und Versuchsvarianten	21
	4.2	Allgemeine Vorgehensweise der Datenerhebung	23
	4.3	Erhebung der Untersuchungsparameter	24
	4.3.2	1 Tabellarische Übersicht	24
	4.3.2	2 Durchführung der visuellen Erhebungen	25
	4.3.3	3 Messinstallationen	31
	4.3.4	1 Entnahme von Bodenproben	47
	4.3.5	5 Orientierende Messungen	50
	4.3.6	5 Laboranalysen	52
	4.3.7	7 Wetterdaten	52
5	Erge	bnisse	54
	5.1	Ergebnisse der visuellen Erhebungen	54
	5.1.3	Bodenansprache (13.08.2015)	54
	5.1.2	2 Erfassung der Fahrspurbildung (05.06.2015)	56
	5.1.3	3 Öffnung des Blattdaches (2014, 2016)	58
	5.1.4	Erfassung der krautigen Biomasse (2013 - 2016)	60
	5.1.	5 Erfassung der Zeigerpflanzen (2013 - 2016)	64
	5.1.6	5 Durchwurzelungsintensität im Bereich der Perforationslöcher (13.08.2015)	67

	5.1.7	Diskussion zu den Daten der visuellen Erhebung 69					
5.	2 Erge	ebnisse der Messinstallationen71					
	5.2.1	Verlauf des Matrixpotentials71					
	5.2.2	Verlauf der CO_2 -Konzentration (in 6 cm Bodentiefe)81					
	5.2.3	Belüftungsverhältnisse (Eisenstabmethode)98					
	5.2.4	Temperaturverlauf (2013 – 2014)					
	5.2.5	Zusammenfassung und Schlussfolgerung zu den Daten der Messinstalationen 105					
5.	3 Erge	bnisse der Bodenuntersuchungen 107					
	5.3.1	Ergebnisse der Bohrstockproben 107					
	5.3.2	Ergebnisse der Stechzylinderuntersuchungen 117					
5.	4 Ver	gleich der Maßnahmenvarianten 120					
	5.4.1	Matrixpotential (Watermark-Sensoren)120					
	5.4.2	CO ₂ -Konzentration der Bodenluft					
	5.4.3	Eisenstäbe als Indikatoren der Bodenbelüftung 129					
	5.4.4	Entwicklung der krautigen Biomasse in den Rückegassen					
	5.4.5 hinweise	Entwicklung der auf eine befahrungsbedingte Störung der Bodenstruktur nden Zeigerpflanzen in den Rückegassen					
6	Zusammenfassung13						
7	Literatur						
8	Anlagen						

1 Einleitung

Das Befahren von Waldboden bewirkt im Boden Veränderungen, welche die Qualität des Standorts Wald auf mehreren Ebenen nachhaltig beeinträchtigen kann. Hierzu gehört die Beeinflussung der Qualität des Bodens als Holznutzfläche, die sowohl den Aufwuchs gesunder Bäume wie auch deren dauerhafte Erreichbarkeit durch Befahrung gewährleisten soll, die Qualität als Erholungsraum für den Menschen sowie die Wahrung der Belange des Natur- und Bodenschutzes.

Hervorgerufen werden die Qualitätsveränderungen durch die Befahrung des Waldbodens unter ungünstigen Boden- und Witterungsbedingungen. Hierdurch können Bodenverformungen in Form von Bodenwülsten und eingetieften Fahrspuren hervorgerufen werden, die im Boden einen veränderten Wasserhaushalt und Belüftungsstörungen zur Folge haben welche sich negativ auf die Befahrbarkeit und das Wurzelwachstum auswirken.

Da der Einsatz von fahrenden Forstmaschinen für eine rationelle Waldbewirtschaftung unvermeidlich ist, wurde durch die zuständige Forstverwaltung anstatt der bis dahin gängigen flächigen Befahrung des Waldbodens, die Befahrung der Holzbodenfläche auf dauerhaften Befahrungslinien, den sogenannten "Rückegassen" eingeführt. Der übrige Waldboden wurde gleichzeitig von jeglicher Befahrung ausgeschlossen.

Da Rückegassen nicht zu den dauerhaften Infrastruktureinrichtungen des Waldes sondern zur produktiven Holzbodenfläche zählen, wird bei ihnen gegenwärtig eine Einschränkung von Bodenfunktionen (Lebensgrundlage für Pflanzen u. Bodenorganismen und Bestandteil des Naturhaushalts, insb. mit seinen Wasser- und Nährstoffkreisläufen) hingenommen.

Das Projekt **"Rückegassen als Feinerschließungssysteme im Wald** – Optimierung durch natürliche Regeneration und technische Maßnahmen unter Berücksichtigung der Belange von Naturschutz und Landschaftsplanung" (RÜWOLA) geht in Bezug auf die oben genannten Qualitätseinbußen im Bereich der Rückegassen der Frage nach, wie eine nachhaltige Sicherung der Bodenfunktionen in Abstimmung mit ökonomischen, ökologischen und sozialen Belangen auf forstlichen Rückegassen gewährleistet werden kann.

Das RÜWOLA-Projekt stellt hierbei ein Verbundprojekt der beiden niedersächsischen Hochschulen in Göttingen (Hochschule für angewandte Wissenschaft und Kunst, HAWK) und in Osnabrück (Hochschule Osnabrück) in enger Zusammenarbeit mit Vertretern von Landesforstbehörden, Landkreisen, Forstdienstleistern und universitären Partnern dar.

RÜWOLA ist in sechs Teilprojekte (TP) untergliedert, die folgende Forschungsschwerpunkte beinhalten:

TP1: Spontane Regeneration von Fahrspuren im Wald – Standörtliche Voraussetzungen, Prozesse und Zeiträume. TP 1 untersucht ob und wie eine natürliche Regeneration von Rückegassen auf unterschiedlichen Waldstandorten erfolgt.

TP2: Ermittlung geeigneter Pflanzenarten für Bodenschutz und Wertschöpfung auf Rückegassen.

TP3: Prüfung der wirtschaftlichen Nutzung durch stoffliche oder energetische Verwertung der auf regenerierenden Rückegassen erzeugten Biomasse. Welche Möglichkeiten bestehen, die Bodenschutzvegetation auf Rückegassen wirtschaftlich zu nutzen (stofflich oder energetisch)?

TP4: Schadensvermeidung bei mechanischer Belastung. TP 4 untersucht ob und wie durch die armierende Wirkung von wurzelintensiven Gehölzen die technische Befahrbarkeit von Rückegassen erhalten werden kann.

TP5: Entwicklung von Verfahren zur Steigerung des Regenerationspotenzials der Böden von Rückegassen TP 5 untersucht, ob und wie der Regenerationsprozess durch aktive flankierende Maßnahmen initiiert, unterstützt und gefördert werden kann.

TP6: Landschaftsökologische Bewertung und Entwicklung eines Optimierungskonzepts zur Wald-Feinerschließung unter Berücksichtigung der Belange des Bodenschutzes, der Forstökonomie, der Erholungsvorsorge und des Arten- und Biotopschutzes. In einem interdisziplinären Ansatz unter Beteiligung von Landschaftsplanern und Forstökonomen sollen aus den Ergebnissen der Teilprojekte 1 bis 5 planerische Gestaltungsspielräume identifiziert werden. Darauf aufbauend werden Vorschläge für die Optimierung der Wald-Feinerschließung unter Beachtung des Bodenschutzes entwickelt.

Der vorliegende Bericht gibt die im Rahmen des **Teilprojekts 5** durchgeführten Untersuchungen und dessen Ergebnisse wieder. Hierbei wurde darauf geachtet, dass bereits bestehende Ansätze und Ergebnisse aus Projekten anderer Bundesländer und Länder in die Projektdurchführung und Auswertung mit aufgenommen wurden. Zu nennen sind hier:

- Merkblatt: Bodenschutz bei der Holzernte in den Niedersächsischen Landesforsten (Niedersächsische Landesforsten 2015).
- Bodenschonende Holzernte (Erler et al., 2013), Fachinstitut für Waldarbeit, Tharandt
- Merkblatt: Bauliche Maßnahmen zur Erhaltung der technischen Befahrbarkeit der Rückegassen (Forst Baden-Württemberg 2012).
- Physikalischer Bodenschutz im Wald (Lüscher et al. 2016)

2 Zielsetzung TP 5

In Teilprojekt 5 wurden Verfahren zur Steigerung des Regenerationspotenzials mit dem Schwerpunkt der Regeneration der Bodenstruktur (Ausbildung eines Bodengefüges) im Bereich der Rückegassen entwickelt und erprobt.

Eine Grundüberlegung zur Förderung der Strukturregeneration des Bodens ist es, die von der Bodenoberfläche ausgehenden Regenerationsprozesse (Rissbildung und Durchporung) in tiefere Bereiche des Bodens zu lenken, um auch hier einen intensiveren Austausch von Luft und Wasser zwischen Atmosphäre und Boden zu erlangen (s. Kapitel 4.1.1.1). Der Grad der angestrebten Bodenregeneration ist hierbei abhängig von der zukünftigen Nutzung der Rückegasse. Soll die Rückegasse aufgegeben werden, so ist ein dem Waldstandort entsprechendes Verhältnis von Bodenluft und Bodenwasser anzustreben. Ist die weitere Nutzung als Rückegasse angestrebt, so ist eine möglichst schnelle Abtrocknung der Gasse zur Sicherung der Befahrung das oberste Ziel. Zur Förderung der Strukturregeneration wurden im Solling und in der Umgebung von Osnabrück Versuche angelegt, bei denen in die Fahrspuren von Rückegassen 20 cm tiefe und 2,6 cm weite Löcher gestanzt wurden. Diese Bodenperforation wurde in einigen Varianten mit einer flächigen Kalkung mit kohlensaurem Kalk, einer Ansaat aus Schattenrasen und Beikräutern sowie mit einer Füllung der Perforationslöcher mit Branntkalk kombiniert. Ausschließlich in Bad Iburg (Landkreis Osnabrück) wurde im Rahmen eines Dissertationsvorhabens ein Versuch zur Ansiedlung von Regenwürmern in den Stanzlöchern durchgeführt.

Hintergrund zur Idee des Lochstanzens

Ein als "Aerifizieren" bezeichnetes Verfahren wird zur Belüftung von Golf- und Sportrasenflächen eingesetzt. Dabei werden die Rasentragschicht und der Unterboden durch Einstechen von Meißeln ("Spoons") perforiert, z.T. auch gelockert. Vollmeißel gibt es mit einem Durchmesser von 5 mm – 32 mm und Werkzeuglängen bis 45 mm. Hohlmeißel haben Außendurchmesser bis 30 mm, Innendurchmesser bis 18 mm und Werkzeuglängen bis 36 mm. Die Hohlmeißel entnehmen einen Bodenkern. Für Sportrasen werden 200-800 Löcher /m² angestrebt. Die Löcher werden mit Sand aufgefüllt, evtl. mit Düngerzusatz. Die Wirksamkeit des Verfahrens zur Behebung von Bodenverdichtungen auf Rasenflächen wurde nachgewiesen (z.B. Guertal & Han, 2002). Nach vorliegenden Kenntnissen wurde eine Adaption des Aerifizierungsverfahrens auf verdichtete Waldböden bisher nicht unternommen. Die für die Rasenpflege konstruierten Maschinen sind auch den mechanischen Belastungen durch Grobwurzeln und Steine in Waldböden nicht gewachsen.

Das Stanzen von Löchern durchbricht die Bodenoberfläche bei maximaler Schonung des vorhandenen Wurzelwerks. Von den künstlich geschaffenen Grobporen könnte in Wechselwirkung mit biologischen Prozessen eine Restrukturierung des Waldbodens ausgehen (Abbildung 1).

Abbildung 1 Hypothetisches Schema der Wirkung gestanzter Löcher im Boden einer Fahrspur. Bildautor: Müller-Inkmann (2013).

Die Anlage von vertikalen Grobporen vergrößert die verdunstungswirksame Bodenoberfläche. Dadurch wird die Verdunstungsrate erhöht und das Bodenwasser verstärkt über die Luft abtransportiert. Außerdem kann anfallendes Niederschlagswasser in tiefere Bodenbereiche abgeleitet werden. Wird ein gut drainierender Bodenhorizont erreicht, kann überschüssiges Wasser schnell abtransportiert werden. Eine reduzierte Bodenerosion durch Oberflächenwasser ist die Folge. Letztlich bewirken erhöhte Verdunstung und Drainage die Reduzierung des Bodenwassergehalts. Je nach Tongehalt führt eine Austrocknung des Bodens zu unterschiedlich stark ausgeprägten Schrumpfungsrissen entlang der Lochwandung. Dadurch kann das Wasser bei neuen Niederschlägen tiefer in den Boden eindringen und die verdunstungswirksame Bodenoberfläche wird zusätzlich vergrößert. Außerdem wird der Boden durch wechselnde Quellung und Schrumpfung gelockert.

Sinkt der Bodenwassergehalt, werden zuvor wassergefüllte Poren für den Gastransport freigegeben. Mehr luftgefüllte Poren und die künstlich geschaffenen Grobporen verbessern den Gasaustausch zwischen Bodenluft und Atmosphäre (Entsorgung von CO₂, Heranführen von O₂). In der Folge wird die Qualität der Bodenluft für das Edaphon (inkl. Wurzeln) verbessert. Die biologische Aktivität sollte gesteigert werden, wenn diese zuvor durch die Belüftungssituation vermindert war. Darüber hinaus spült das Niederschlagswasser oberflächig vorhandenes Material (z.B. Humus, ausgestanzten Boden oder ausgebrachten Kalk) in das Loch. Mit jedem neuen Niederschlag wird somit mehr Material in tiefere Bodenbereiche eingespült. Das Material dient als Nahrung für das Edaphon (inkl. Wurzeln) oder zur Verringerung der Bodenacidität (falls Kalk ausgebracht wurde). Ein größeres Nahrungsangebot und eine verringerte Bodenacidität bewirken die Erhöhung der biologischen Aktivität am Grund des Loches, wodurch die biogene Strukturbildung gefördert wird. Im Laufe der Zeit dürfte das Loch vollständig aufgefüllt sein und es hat sich ein strukturreicher Boden pedogener Lagerung gebildet.

Erwartete Wirkung der Ausbringung von kohlensaurem Kalk

Durch die Einstellung des optimalen pH-Wertes in der Rückegasse in Bezug auf die chemischen, biologischen und physikalischen Parameter der Bodenentwicklung wird die natürliche Regeneration der Gasse erhöht. Die Wirkungsmechanismen sind hier die Ausbildung eines stabilen Bodengefüges durch Ton-Humuskomplexe, einhergehend mit einer Verbesserung der Porenverteilung und Porenkontinuität zur Regulierung des Bodenwasser- und Bodengashaushalts. Die Kalkapplikation eliminiert die Protonen- und Aluminiumtoxizität im Bearbeitungshorizont und gewährleistet eine ausgewogene Versorgung an basischen Makronährstoffen, insbesondere Calcium und Magnesium. Dies dürfte sich gerade in der Anwuchsphase positiv auf das Wurzelwachstum und die bodenmikrobiologischen Umsatzprozesse auswirken (NW FVA 2010).

Erwartete Wirkung der Verfüllung mit Branntkalk

Branntkalk reagiert mit dem freien Wasser des Bodens. Die 20 cm tief in den Boden reichenden Branntkalksäulen härten aus und entziehen dem sie umgebenden Boden Feuchtigkeit. Durch diese parallel verlaufenden Prozesse soll eine punktuelle Stabilisierung des Bodens erzielt werden, welche die Rückegasse vor weiterer Verformung, bei zukünftigen Befahrungen, schützt. Es wird erwartet, dass der pH-Effekt des Branntkalks in einem steilen räumlichen Gradienten mit lokal extremer pH-Anhebung erfolgt, und dass die Abmilderung und Ausbreitung der pH Wirkung eine längere Zeit der Verwitterung und Bioturbation braucht.

Erwartete Wirkung der Aussaat einer Kraut-Rasenmischung

Die Aussaat von krautigen Pflanzen in der Rückegasse bewirkt u.a. eine Zufuhr an ober- und unterirdischer organischer Substanz zur Verbesserung der Bodenstruktur und Nährstoffversorgung der Bodenflora und Bodenfauna (Feeney et al. 2006). Die Boden-/Vegetationsoberfläche selbst nimmt in Bezug auf die Abflussbildung eine Schlüsselstellung ein. Sie entscheidet häufig, ob das Wasser infiltrieren kann oder Oberflächenabfluss entsteht (BFW 2016). Durch einen hohen Bedeckungsgrad der Gasse wird besonders in Hanglagen die Gefahr der Bodenerosion gesenkt (LBEG 2014). Ein hoher Bedeckungsgrad verringert die Austrocknung der Bodenoberfläche so dass die Infiltration und Verdunstung von Niederschlagswasser über einen längeren Zeitraum gegeben ist.

3 Untersuchungsgebiet

Als Untersuchungsgebiet wurde eine niedersächsische Waldfläche ausgewählt, die sich durch eine ca. 70 cm mächtige Lössdecke als besonders verdichtungsempfindlich und durch einen niedrigen pH-Wert mit einer geringen biologischen Aktivität auszeichnet. Die Versuchsfläche befindet sich im Niedersächsischen Forstamt Dassel in der Revierförsterei Hilwartshausen im Solling. Untersucht wurde eine Hanglage mit ost-südöstlicher Ausrichtung der Abteilung 1052a.

3.1 Geographische und geologische Einordnung des Untersuchungsgebiets

Die Gewölbestruktur des Sollings entstand im Zuge der variskischen Gebirgsbildung durch Herauswölbung des Buntsandsteinmassives als Folge plattentektonischer Bewegungen. Regionaltektonisch gehört der Solling zur "Hessischen Senke" (Hedemann 1957) und weist eine Buntsandsteinmächtigkeit von bis zu 600 m auf (Rothe 2009).

Die Versuchsfläche liegt im östlichen Teil des Sollingmassivs im Wuchsgebiet "Südniedersächsisches Bergland" und ist dem Wuchsbezirk "Unterer Solling" zuzuordnen.

Der untere Solling ist ein geschlossenes Wald-Bergland und wird als ein "einheitlich geformter flachgewölbter Schild aus Wechselfolgen des Mittleren Buntsandsteins mit Lößdecken und Löß-Buntsandstein-Fließerden verschiedener Mächtigkeiten" zwischen den Flüssen Leine und Weser beschrieben (Arbeitskreis Standortkartierung 1985). Der Wuchsbezirk liegt mit 250 - 400 m ü. NN in der kollinen bis submontanen Höhenstufe und unterscheidet sich dadurch von dem benachbarten Wuchsbezirk "Hoher Solling", der durch seine submontanen bis montanen Höhenstufen ausgegliedert ist (Arbeitskreis Standortkartierung 1985).

Die perspektivische Ansicht der Abbildung 2 zeigt die deutlich abgerundeten Berg- und Talgliederungen, welche im Wesentlichen durch Erosion entstanden sind und einzelne wenige Bruchfalten aufweisen (Arbeitskreis Standortkartierung 1985).

Abbildung 2: Ausschnitt des Wuchsbezirkes "Unterer Solling". Der rote Pfeil verweist auf die untersuchte Abteilung 1052a (Bundesamt für Kartographie und Geodäsie 2008).

Die im TP 5 untersuchten Rückegassen (s. Abbildung 3) liegen innerhalb der Abteilung 1052a. Das hier anzutreffende Ausgangsgestein ist aus den Wilhelmshausener-, Trendelburger- und Karlshafenerschichten (Sms₁ - Sms₃) des mittleren Buntsandsteines aufgebaut (Hedemann 1957). Im östlichen Teil des Untersuchungsgebietes schließt sich das parallel verlaufende "Riepenbachtal" an, welches teils mächtige Fließerden aus Lösslehm enthält.

Abbildung 3: : Geologische Übersichtskarte. (Quelle: LBEG 2013, verändert)

3.2 Klimabedingungen im Untersuchungsgebiet

Das Klima des Wuchsbezirkes "Unterer Solling" wird als ein "atlantisch getöntes Berglandklima mit hohen Jahresniederschlägen und hoher Luftfeuchtigkeit bei kühlen Temperaturen und geringeren Schwankungen der Temperaturextreme" beschrieben (Arbeitskreis Standortkartierung 1985).

Im Mittel liegen die jährlichen Niederschlage bei 865 mm davon ereignen sich 385 mm in der Vegetationszeit. Die mittlere Jahrestemperatur beträgt 7,8°C. Die Anzahl der Frosttage liegt bei 105 pro Jahr (Niedersächsische Landesforsten 2016).

Der Wuchsbezirk "Unterer Solling" liegt im Grenzbereich zwischen der subatlantischen und subkontinentalen Klimatönung, da der Schwankungsbereich der Jahrestemperatur (Differenz der Durchschnittstemperatur der Monatsmittel Januar (Minimum) und Juli (Maximum)) (HETSCH und GAERTIG 2011) laut Arbeitskreis Standortskartierung (1985) genau bei 16,5 °C liegt. Daher wird nach hessischem Modell der Feuchteindex errechnet, der ein schwach subatlantisches Klima unterstreicht.

3.3 Bestandsbeschreibung der Abteilung 1052a

Bei der insgesamt ca. 19 ha großen Abteilung 1052a handelt es sich um einen Buchen-Reinbestand (Gertenholz bis Stangenholz, Anteil Buche > 80%) der sich wie folgt zusammensetzt (nach Struckmeyer 2013):

- Bestand 34-jährig aus Naturverjüngung, Jungbestand auf wüchsigem Standort mit vereinzelten Fäll-, Rücke- und Schlagschäden und normaler bis eingeklemmter Krone.
- Bestand 29-jährig aus Naturverjüngung
- Bestand 25-jährig aus Pflanzung, Hainbuche
- Nebenbaumart 24-jährige Fichte, aus Naturverjüngung.

Der Bestandesschluss kann im Jahr 2013 als geschlossen bis gedrängt beschrieben werden.

3.4 Forstliche Standortstypen und Reliefform der Probefläche

Die Abbildung 4 zeigt die modellierte Standortstypenkarte der Abteilung 1052a, in der drei unterschiedliche Standortstypen (s. u.) zu unterscheiden sind. Die untersuchten Versuchsgassen liegen fast ausschließlich in dem Standortstyp 9.4-.2.3. Die Abbildung 5 zeigt einen Geländeschnitt durch die höchste Erhebung der Abteilung 1052a. Die Lage im Relief, die Hangneigung und seine Wölbung sowie die Exposition fließen in die Ausweisung des Standorttyps mit ein.

Die Abbildung 5 ist in zwei Abschnitte unterteilt, wobei der obere Teil die maßstabsgetreue Reliefform und der untere Teil eine überhöhte Darstellung visualisiert. Es wird deutlich, dass das schwachwellige Relief nach Osten stärker abfällt als nach Westen. An der höchsten Erhebung (410 m ü. NN) beträgt die Neigung rund 10 %. Auf den untersuchten Versuchsgassen wurden maximale Steigungen von ca. 19 % gemessen (s. Kapitel 3.5.1.). Der niedrigste Punkt der Abteilung liegt bei ca. 375 m ü. NN. Die leicht konvexe Reliefform des Untersuchungsgebietes führt zu einer dreigeteilten Standortsverschlüsselung.

Abbildung 4: : Standortstypenkarte der Niedersächsischen Landesforsten (nach JENSEN 2013 a, verändert)

Abbildung 5: : Geländeschnitt durch den Untersuchungsbestand (aus Struckmeyer 2013)

Im Folgenden werden die drei in der Abteilung 1052a vorkommenden Standorttypen nach dem "Geländeökologischen Schätzrahmen" der Niedersächsischen Landesforsten beschrieben.

Standortverschlüsselung 9.3+.2.2

Frische und vorratsfrische Standorte der Ebenen, flachen und sehr breiten Mulden, breiten Plateaus und sehr flachen Hänge bis 5 % Neigung, auch schwach staufrisch im tiefen Unterboden (= günstig), mäßig mit Nährstoffen versorgt, aus sandig-lehmigen Böden oder schluffig, lehmigen Decken (Lösslehm) bei Mächtigkeiten < 30 cm (Niedersächsische Landesforsten 2005). Die Variantenkennung der Nährstoffziffer (+) zeigt eine bessere Nährstoffversorgung als der Grundtyp (Niedersächsische Landesforsten 2009).

Standortverschlüsselung 19.4-.2.2l

Schattseitig frische und vorratsfrische, auch im Unterboden staufrische (= physiologisch günstig) Hang- und Hangmuldenstandorte, ziemlich gut mit Nährstoffen versorgt, aus sandig-lehmigen Böden oder schluffig-lehmigen Decken (Lösslehm) bei Mächtigkeiten < 30 cm (Niedersächsische Landesforsten 2005). Gleichzeitig ist auf die Variantenkennung **"I"** hinzuweisen, die verwendet wurde, um die Oberbodenbeeinflussung hervorzuheben. Das **"I"** steht für "stark schluffiges i.d.R. von Löß oder Sandlöss beeinflusstes Material im Oberboden (i.d.R. 20 bis 40 cm mächtige Fließerden)". Die Variantenkennung der Nährstoffziffer (-) zeigt eine schwächere Nährstoffversorgung als der Grundtyp (Niedersächsische Landesforsten 2009).

Standortverschlüsselung 9.4-.2.3

Frische und vorratsfrische Standorte der Ebenen, flachen und sehr breiten Mulden, breiten Plateaus und sehr flachen Hänge bis 5 % Neigung, ziemlich gut mit Nährstoffen versorgt, aus 30 bis 70 cm mächtigen, schluffig-lehmigen Decken, auch Lößlehmdecken oder stark schluffgeprägte Fließerden über basenarmem Silikatgestein (Niedersächsische Landesforsten 2007). Gleichzeitig ist auf die Variantenkennung "I" hinzuweisen, die verwendet wurde, um die Oberbodenbeeinflussung hervorzuheben. (Niedersächsische Landesforsten 2009). Die Abteilung weist damit verunreinigte Lösslehmfließerden auf, die aufgrund ihrer Mächtigkeit nicht für eine Verschlüsselung nach 2.3 ausreichen (JENSEN 2013 b). Die Variantenkennung der Nährstoffziffer (-) zeigt eine schwächere Nährstoffversorgung als der Grundtyp (Niedersächsische Landesforsten 2009).

3.5 Kleinräumige Standortunterschiede innerhalb der Versuchsfläche

Zur Ausweisung kleinräumige Standortunterschiede wurden die Hangneigung, die Mächtigkeit der Lössdecke sowie der Steingehalt auf der Versuchsfläche ermittelt.

3.5.1 Hangneigung der Versuchsgassen

Die mittlere Hangneigung der Versuchsgassen wurde mit dem Leica Builder 509 erfasst. Betrachtet wurden ausschließlich die 50 m Gassenabschnitte, in denen die Versuche angelegt und ausgewertet wurden. Die Auswertung ergab Hangneigungen der Gassenabschnitte, die zwischen 10% und ca. 19% liegen (Abbildung 6).

Die geringste Neigung mit ca. 10% liegt somit bei den südlichen Gassen vor (G28 – G24). Die stärkste Neigung mit ca. 19%, ist bei den zentral gelegenen Gassen G32 bis G34 zu finden.

Abbildung 6: Hangneigung der Versuchsgassen innerhalb der Abteilung 1052a. Entlang bestehender baumfreier Schneisen verlaufende Gassen sind in der Tabelle mit "ja" gekennzeichnet.

3.5.2 Mächtigkeit der Lössdecke

Auf der Versuchsfläche wurde eine hochauflösende Standortfeinkartierung mittels Bohrstock in einem Raster von 15 x 15 m durchgeführt, um eine detaillierte Aufschlüsselung der Bodenart des Oberbodens und der Mächtigkeit der schluffigen Bodenhorizonte zu ermitteln (Struckmeyer 2013). In Abbildung 7 ist zu sehen, dass die Mächtigkeit des schluffigen Bodenmaterials am Unterhang mit Werten > 70 cm wesentlich höher ist, als am Oberhang (0-15 cm), welches auf Solifluktions- und Erosionsprozesse und zurückzuführen ist.

Die Versuchsgassen befinden sich in einem Hangbereich, in dem die lösshaltige Substratdecke zwischen einer Mächtigkeit von 30 cm bis > 70 cm variiert (Struckmeyer 2013).

Abbildung 7: Mächtigkeit der Substratdecke mit hohem Schluffanteil

Dargestellt ist die Mächtigkeit der schluffigen Bodenhorizonte, welche mittels einer Bohrstockfeinkartierung in einem 15 x 15 cm Raster ermittelt worden ist.

3.5.3 Steingehalt

Die Steingehalte im Boden wurden im Rahmen einer Stechzylinderentnahme im Dezember 2013 stichprobenartig ermittelt (s. 4.3.4.2). In zehn Gassen wurden 2 m unterhalb des Beginns der Versuchsgasse und aus dem Bestand, aus den Tiefenbereichen 5 - 10 cm uGOK und 30 - 40 cm uGOK jeweils vier Stechzylinder entnommen. Für den Bestand liegt der ermittelte Steingehalt im Mittel im Tiefenbereich 5 – 10 cm bei 11,0 Masse-% (± 1,5) und im Tiefenbereich 30 – 40 cm bei 10,4 Masse-% (± 1,5) (s. Tabelle 1). Nach der Einstufung der Bodenkundlichen Kartieranleitung 5 (BK 5) liegt der mittlere Steingehalt des Bestands somit in der Stufe "schwach steinig" (3 bis < 15 Masse %).

Tabelle 1: Steingehalt im Bestand

Gassen-Nr./	28	27	26	25	24	23	31	32	33	34	35	36	37	38	45	46	47	48	49	
Steingehalt Masse-%																				Mittel
5 - 10 cm uGOK	3	4	-	10	13	-	8	-	-	12	18	-	-	15	-	-	15	16	-	11,0
Stabw.	1	1	-	1	2	-	1	-	-	1	0	-	-	1	-	-	2	9	-	1,5
30 - 40 cm uGOK	4	4	-	11	11	-	9	-	-	19	6	-	-	13	-	-	10	18	-	10,4
Stabw.	2	0	-	1	1	-	0	-	-	3	4	-	-	4	-	-	0	1	-	1,5

Dargestellt ist der Steingehalt in Masse-% zum trockenen Boden in zwei Tiefenstufen unterhalb der Geländeoberkante (uGOK). Die Probennahme erfolgte mittels 100 cm³ Stechzylindern im Bestand in 5-10 cm uGOK und 30-40cm uGOK. n = 2 pro Tiefenstufe. uGOK = unter Geländeoberkante. Stabw. = Standardabweichung.

3.5.4 Trockenrohdichte

Die Trockenrohdichte (TRD) im Boden des Bestands wurde im Rahmen der unter Kapitel 3.5.3 beschriebenen Stechzylinderentnahme ermittelt. Für den Bestand liegt die ermittelte TRD im Tiefenbereich 5 – 10 cm im Mittel bei 1,1 g/cm³ (± 0,1) und im Tiefenbereich 30 – 40 cm bei 1,3 g/cm³ (± 0,1) (Tabelle 2). Nach der Einstufung der BK 5 liegt die mittlere TRD des Oberbodens somit in der Stufe "sehr gering" (< 1,2 g/cm³). Die mittlere TRD des Unterbodens liegt in der Stufe "gering" (1,2 bis < 1,4 g/cm³). Die Darstellung der TRD für den befahrenen Bereich der Gassen wird im Ergebnisteil unter Kapitel 5.3.2.1 dargestellt.

Tabelle 2: Trockenrohdichte im Bestand

Gassen-Nr./	28	27	26	25	24	23	31	32	33	34	35	36	37	38	45	46	47	48	49	
TRD (g/cm ²)																				Mittel
5 - 10 cm uGOK	0,8	1,1	-	1,3	1,1	-	1,1	-	-	1,2	1,0	-	-	1,2	-	-	1,1	1,2	-	1,1
Stabw.	0,1	0,0	-	0,1	0,0	-	0,1	-	-	0,0	0,1	-	-	0,1	-	-	0,0	0,2	-	0,1
30 - 40 cm uGOK	1,1	1,3	-	1,5	1,2	-	1,2	-	-	1,4	1,3	-	-	1,3	-	-	1,3	1,3	-	1,3
Stabw.	0,1	0,1	-	0,1	0,1	-	0,0	-	-	0,1	0,0	-	-	0,0	-	-	0,0	0,0	-	0,1

Dargestellt ist die Trockenrohdichte in g/cm³ trockenem Boden. Die Probennahme erfolgte mittels 100 cm³ Stechzylindern im Bestand in 5-10 cm uGOK und 30-40cm uGOK. n = 2 pro Tiefenstufe. uGOK = unter Geländeoberkante. Stabw. = Standardabweichung.

3.5.5 Bodenart und Schrumpfungsverhalten

Im Bereich der Versuchsgassen variieren die Bodenarten in Abhängigkeit vom Tongehalt zwischen mittel bis stark tonigem Schluff und schluffigem Lehm (Tabelle 3). In den beiden untersuchten Bodentiefen von 15 cm uGOK und 35 cm uGOK liegt innerhalb der jeweils betrachteten Gasse kein Wechsel der Bodenart vor. Die Probenentnahme erfolgte direkt unterhalb der Versuchsabschnitte innerhalb der Gassen (Segment 1) und oberhalb der Versuchsabschnitte (Segment 4). Es wurden keine wesentlichen Unterschiede in der Kornzusammensetzung vom oberen zum unteren Bereich der Versuchsabschnitte ermittelt (s. 4.3.4.4).

Ausgehend von einer Bodenprobe mit weicher Konsistenz, lag die ermittelte maximale Größe der Schrumpfung bei 7,6 %. Die Korndichte liegt bei 2,54 g/cm³ (\pm 0,04 g/cm³), bei einer Stichprobengröße von n = 6 (s. 4.3.4.3).

	Gassen-Nr./ % Kornfraktion < 2mm	26	23	36	47	Stabw. n = 8
	Ton	16,5	20,1	18,9	18,9	2,6
Oberboden	Schluff	71,3	62,6	64,7	67,2	4,7
15 cm uGOK	Sand	12,2	17,3	16,5	14,0	2,6
	Bodenart	Ut3	Lu	Lu	Ut4	
Lintarhadan	Ton	16,5	20,9	19,1	18,5	3,1
35 cm uGOK	Schluff	71,7	61,6	65,0	67,8	5,1
oo om deore	Sand	11,8	17,6	15,9	13,7	2,7
	Bodenart	Ut3	Lu	Lu	Ut4	

Tabelle 3: Bodenarten im Bereich der Versuchsgassen

Dargestellt ist die Bestimmung der Textur mittels Aräometer (Doppelbestimmung) und Siebung in zwei Bodentiefen (15 cm und 35 cm uGOK) aus vier Versuchsgassen.

3.5.6 Baumfreie Schneisen

In der Forstabteilung 1052a bestanden bereits vor der aktuellen Durchforstung baumfreie Schneisen. Diese haben einen Abstand von ca. 40 m zueinander, welches auf ein älteres, weitmaschigeres Feinerschließungssystem hindeutet. Die baumfreien Schneisen wurden auch jagdlich genutzt (Becker mündl. Mitteilung 2013). Die Schneisen wurden in das bei der aktuellen Durchforstung angelegte Feinerschließungsnetz integriert. Abbildung 8 zeigt, welche Rückegassen in baumfreien Schneisen verlaufen.

Abbildung 8: Vor Anlegung der Rückegassen bestehende baumfreie Schneisen. Die Rückegassen 27, 25, 23, 33, 36, 45 und 48 verlaufen in baumfreien Schneisen (rot dargestellt).

4 Material und Methoden

4.1 Anlegen der Gassen

Der Versuch wurde im Rahmen der ersten Feinerschließung einer 35 Jahre alten Buchendickung angelegt. Die Gassen wurden in zwei Überfahrten mit einem Harvester Logset F5 (13 t Leergewicht, 700 mm Reifenbreite, 3,3 bar Reifendruck) angelegt. Das Holz wurde mit einem Forwarder Ponsse Buffalo gerückt (18 t Leergewicht, 4 Achsen, 700 mm Reifenbreite, 4 bar Reifendruck, Ackerprofil). In einigen Gassen kam alternativ der zum Forwarder umgebaute Logset F5 zum Einsatz (s. Tabelle 4). Mit dem Forwarder wurden ca. 6 bis 10 Überfahrten gemacht. Die Befahrung wurde bewusst bei feuchtem Boden im Zeitraum Januar bis April 2013 durchgeführt, um regenerationsbedürftige Fahrspuren des Typs 2 nach WSL-Bewertung (Lüscher et al. 2010) zu erhalten.

4.1.1 Anlegen der Maßnahmenvarianten

Auf 16 Rückegassen wurden vier verschiedenen Maßnahmen zur Förderung der Bodenregeneration, sowohl einzeln wie auch in Kombination, getestet. Insgesamt wurden 8 Maßnahmenvarianten untersucht. Die Varianten wurden auf jeweils zwei Rückegassen über eine Länge von 50 Metern angelegt. Jede Gasse hat eine durchschnittliche Breite von ca. 4 Metern. Zusätzlich wurden drei Referenzgassen ausgewiesen, in denen die Entwicklung ohne Behandlungsmaßnahmen beobachtet wurde. Insgesamt wurden also 19 Rückegassen untersucht.

4.1.1.1 Bodenperforation (Lochstanzen), Varianten S50 und S20

Im Bereich der durchschnittlich ca. 70 cm breiten Fahrspuren wurden 20 cm tiefe Löcher mit einem Durchmesser von 26 mm gestochen. Der hierbei anfallende, ausgestochene Bodenpfropfen wurde abgesammelt (Abbildung 10).

Die Anzahl der Löcher beträgt pro Meter einer Fahrspur entweder 6 Löcher mit einem Längenabstand von 50 cm zueinander (Variante S 50) oder 15 Löcher mit einem Längenabstand von 20 cm zueinander (Variante S 20) (s. Abbildung 9).

Die Löcher wurden mit einem umgebauten Handgerät (Abbildung 9) für das Aerifizieren von Rasenflächen in die Fahrspur gestanzt (www.rasenspecht.de).

Abbildung 9: Verteilung der Perforationslöcher der Versuchsvarianten S50 und S20 und Perforationsgerät

Abbildung 10: Herausgepresstes Bodenmaterial des Stanzloches und perforierte Fahrspur (S20)

4.1.1.2 Ausbringung von Kohlensaurem Kalk, Variante K

Über die gesamte Gassenbreite (Fahrspur links, Mittelspur, Fahrspur rechts) wurden umgerechnet ca. 12 t/ha CaCO₃ in Form von kohlensauren Magnesiumkalk (82% CaCO₃) ausgebracht. Die ausgebrachte Kalkmenge wurde nach der Empfehlung der Landwirtschaftskammer Niedersachsen für Ackerböden ermittelt. Der Ziel-pH-Wert wurde bei 5,6 und die Bodenart als IU festgelegt. Hieraus ergab sich eine Düngeempfehlung von 6,7 t CaO, umgerechnet 11,9 t/ha kohlensaurem Magnesiumkalk (berechnet nach CaCO₃-Äquivalenten). Die Ausbringung der gesamten Menge erfolgte per händischem Streuen im April 2013 direkt vor der Durchführung der Perforation (*Abbildung 11*).

Abbildung 11: Variante K, flächige Kalkausbringung

4.1.1.3 Verfüllung der Perforationslöcher mit Branntkalk, Variante Kd

Hierfür wurden Perforationslöcher im Abstand von 50 cm (S50) mittels eines Trichters direkt mit Branntkalk (70 % CaO, 30 % CaCO₃) aufgefüllt (Abbildung 12). Umgerechnet ergab der eingesetzte Branntkalk eine Menge von ca. 6 t/ ha CaCO3.

Abbildung 12: Variante Kd, direkt in das Perforationsloch eingebrachter Branntkalk

4.1.1.4 Aussaat Kraut-Rasenmischung. Variante P

Nach der Durchführung der Bodenperforation (S50) wurde über die gesamte Gassenbreite eine Saatmischung (s.u.) per Handwurf ausgebracht. Um eine gleichmäßige Verteilung des Saatguts zu erzielen wurde die Aussaat einmal in Richtung hangaufwärts und einmal hangabwärts ausgestreut. Ein abschließendes Anwalzen der Saat erfolgte nicht.

Die Mischung setzt sich aus der Rasenmischung "Schattenrasen – Classic Green" der Firma Hega GmbH und drei zugemischten Staudenarten zusammen. Die fertige Mischung wurde in einer Aussaatstärke von ca. 25 g/m² ausgebracht.

Zusammensetzung des Schattenrasens

20 % Deutsches Weidelgras diploid, früh
20 % Deutsches Weidelgras diploid, früh bis mittelspät
20 % Rotschwingel Sorte 1 ausläufertreibend
20 % Schafschwingel RSM
10 % Rotschwingel Sorte 2 ausläufertreibend
5 % Gemeine Rispe RSM
5 % Rotschwingel horstbildend, RSM

Beigemengtes Saatgut zur Schattenrasenmischung

Lathyrus vernus, Frühlings-Platterbse Luzula sylvatica, Waldhainsimse Millium effusum 'Aureum', Gelbe Waldhirse

Ausbringungsdaten

Fläche pro Gasse: $50m \times 4m = 200m^2$

Anzahl Gassen: 2 Varianten x 2 Wiederholungen = 4 Gassen

Aussaatfläche gesamt: $200m^2 \times 4 = 800 m^2$

Ausgebrachte Saatgutmengen: - 20 kg Schattenrasenmischung

- 20 g Lathyrus vernus
- 2 g Luzula sylvatica
- 2 g Millium effusum 'Aureum'

Abbildung 13: Variante P (Pflanze), Aussaat einer Rasenmischung mit Beikräutern.

4.1.2 Übersicht der Rückegassen und Versuchsvarianten

Die unter Abschnitt 4.1.1 genannten Maßnahmenvarianten wurden separat oder in Kombination auf den Versuchsgassen angelegt. Eine Übersicht der Maßnahmenvarianten und die Zuordnung der Gassen ist in Tabelle 4 und Abbildung 14 wiedergegeben. Ebenfalls dargestellt sind der Zeitraum und der Maschineneinsatz der Erstbefahrung. Ehemalige, baumlose Jagdschneisen sind mit einem (o) gekennzeichnet.

Gasse ¹⁾	Anlage der Gasse ²⁾	Varianten- bezeichnung	Perforationslö- cher alle 50 cm	Perforationslö- cher alle 20 cm	Kalk flächig	Branntkalk im Perforations- loch	Ansaat
G28	L III/13	S50.a	х				
G27 (o)	L III/13	S20.a		х			
G26	L III/13	Ref.a					
G25 (o)	L III/13	S20K.a		х	х		
G24	L III/13	S50Kd.a	х			х	
G23 (o)	L III/13	S50K.a	х		х		
G31	L III/13	K.a			х		
G32	L III/13	S50KP.a	х		х		х
G33 (o)	L III/13	S20.b		х			
G34	L III/13	Ref.b					
G35	L III/13	S50P	х				х
G36 (o)	L III/13	S20K.b		х	х		
G37	L III/13	S50.b	х				
G38	L III/13	S50P.b	х				х
G39- G44	L III/13		wegen zu geringer	Lößmächtigkeit vor	n Versuch aus	geschlossen	
G45 (o)	L XII/12	K.b			х		
G46	B XII/12	S50KP.b	х		х		х
G47	B XII/12	S50K.b	x		x		
G48 (o)	B XII/12	Ref.c					
G49	B XII/12	S50Kd.b	x			x	

Tabelle 4: Rückegassen der Abt. 1052a (in der Reihenfolge von Süden nach Norden) und ihre Zuordnung zu Versuchsvarianten. Ref. = unbehandelte Referenzgasse

¹⁾ (o) = Gasse wurde auf baumfreier Schneise angelegt

²⁾ Holzrücken mit B = Ponsse Buffalo, L = Logset F5. Monat/Jahr des Befahrens

Maßnahmenvarianten innerhalb der Versuchsgassen, Forsamt Dassel Abteilung 1052

Abbildung 14: Verteilung der Maßnahmenvarianten innerhalb der Versuchsgassen.

4.2 Allgemeine Vorgehensweise der Datenerhebung

Bei der Positionierung von Mess- und Beobachtungspunkten wurden die Gassenbereiche Fahrspur (FS) und Mittelstreifen (M) getrennt betrachtet. Hinzu kommen Messungen im unbefahrenen Bestand (B, ca. 5 m abseits der Gasse). Jeder dieser drei Bereiche ist wiederum in vier Segmente (S1 -S4) unterteilt. Jedes Segment ist 12,5m lang. Segment 1 befindet sich jeweils am untersten Punkt einer Gasse; die folgenden Segmente schließen sich hangaufwärts bis zu S4 (Oberhang) an (Abbildung 15).

Abbildung 15 Einteilung einer Rückegasse in Untersuchungsbereiche

Um die langfristige Beobachtbarkeit der Versuchsgasse sicherzustellen, wurde die Gasse grundsätzlich nur über den links neben dem Randwulst liegenden Trampelpfad begangen (s. Abbildung 15). Ebenso erfolgten Beprobung und Messinstallationen grundsätzlich nur in der linken Fahrspur. Die rechte Fahrspur blieb ungestört.

Für die Lokalisierung von Beprobungspunkten wurde zu Beginn der Untersuchungen eine Tabelle mit Zufallszahlen erstellt (s. Anlage S. 156). Für jedes Segment wurden mit der Excel-Funktion "ZUFALLS-ZAHL" acht Zufallszahlen erzeugt. Für Bestand, Fahrspur und Mittelstreifen wurden jeweils eigene Zufallszahlen erzeugt. Benachbarte Beprobungspunkte mussten mindestens 0,5 m voneinander entfernt sein. Jeder Beprobungspunkt wurde nur einmal genutzt.

4.3 Erhebung der Untersuchungsparameter

4.3.1 Tabellarische Übersicht

Auf den Versuchsgassen und im Bestand wurden visuelle Erhebungen durchgeführt, dauerhafte Messinstallationen eingesetzt und zusätzliche Bodenparameter erhoben. Eine Übersicht zur Parametererhebung geben die Tabelle 5 bis Tabelle 7.

Methode	Zeitpunkt/Zeitraum	Gassen/ Gassenbereich	Parameter		
Bodenansprache	13.08.2015	G25 (Fahrspur)	Ansprache nach KA5		
	05.06.2013		 Spurtiefe ab GOK Randwülste (Höhe, Ausdehnung) 		
	05.09.2013	alle Gassen (Fahr- und Mittelspur)	 Vegetation (Biomasse) Bodenoberfläche (Risse, Losung grabender Bodentiere, Poren, Stubben) 		
Datenerhebung	17.10.2014		-Vegetation (Biomasse, Zeiger-		
	13.07.2015		pflanzen für Bodenverdichtung)		
	13.08.2015	G25, G33, G46, G49	Fotodokumentation der Perforati- onslöcher, Wurzelzählung im Be- reich der Perforationslöcher, pH- Wert in situ und im Labor		
Hemisphärenfotos	26.07.2014 06.06.2016	alle Gassen	Canopy Openness (% sichtbarer Himmel)		

Tabelle 5: Übersicht der visuellen Erhebungen

Tabelle 6: Übersicht der Messinstallationen

Methode	Zeitpunkt/Zeitraum	Gassen	Parameter		
	Mai – August 2013	G24, G32, G37, G48			
	Sept. 2013 – Dez. 2014	alle Gassen			
Sensoren zur Messung der Boden-Wasserspannung ¹⁾	essung der pannung ¹⁾ April – Oktober 2015 G23, G24, G26, G31, G32, G33, G45, G46, G47, G48, G49		Matrixpotential und Temperatur in 6 – 10 cm uGOK; im Jahr 2016 auch in 18-22 cm uGOK		
	März – Juni 2016	G26, G34, G36, G37, G48; alle Gassen (20 cm Tiefe)			
	Mai – August 2013	G28, G26, G24, G32, G37, G46, G48			
	Sept. – Dez. 2013	alle Gassen			
	März – Dezember 2014	alle Gassen	CO Kanzantration dar Badanluft		
CO ₂ -Sensoren mit Datenlogger	April – Oktober 2015	G23, G24, G26, G31, G45, G46, G47, G48, G49	und Temperatur in 6 cm uGOK; i		
	März – Juni 2016	G26, G48 (6 cm Tiefe); G24, G25, G26, G27, G33, G36, G48, G49 (20 cm Tiefe)			
	Mai – Juni 2013				
Fisenstähe	Sept – Okt. 2013	alle Gassen	reduktive/oxidative Merkmale am		
Liscustabe	April – Juni 2014		Eisenstab bis 27 cm uGOK		
	Sept. – Okt. 2014				
	Sept. – Okt. 2015				

¹⁾ Die Messung der Boden-Wasserspannung wird bis auf weiteres in der Installation des Jahres 2016 von der Nordwestdeutschen Forstlichen Versuchsanstalt fortgeführt.

	0		-
Methode	Zeitpunkt/Zeitraum	Gassen	Parameter
Bohrstock-Proben	03.09.2013	alle Gassen	Analyse von pH, C _{org} , grav. Was-
und 30-40 cm	17.10.2014	alle Gassen	sergehalt
Stechzylinder (100cm ³)	17.12.2013	G28, G27, G25, G24, G31, G35, G38, G47, G48	Trockenrohdichte, Steingehalt
	13.08.2015	G25, G33, G46, G49	
Stechzylinder (865cm ³)	30.06.2014	G26, G38, G48	Atterberg'sche Grenzen, Porosi- tät, Trockenrohdichte, Korndich- te, Kornverteilung, Schrumpfung
gostärte Rodennrohen	18.09.2014	G26, G23, G36, G47	Kornverteilung
gestorie bodenbroben	13.08.2015	G25, G33, G46, G49	pH-Wert (Labor)

Tabelle 7: Übersicht der Bodenuntersuchungen

Tabelle 8: Übersicht der orientierenden Untersuchungen

Methode	Zeitpunkt/Zeitraum	Gassen	Parameter
TDR-Sonde	05.06.2013	alle Gasse	vol. Wassergehalt
Schlagsonde (orientierende Untersuchung)	06.06.2013	G23-G28, G31-G35	Eindringwiderstand

4.3.2 Durchführung der visuellen Erhebungen

Die folgenden Unterkapitel beschreiben die Vorgehensweise der visuellen Datenerhebung im Rahmen der durchgeführten Erfassung der Biomasse, der Messungen zum Kronenschluss (Hemisphärenfotos) sowie der Bodenansprache.

4.3.2.1 Erfassung der Spurbildung

Um den Einfluss der angewandten Maßnahmen auf die Veränderung der Standortqualität des Bodens innerhalb der Gasse verfolgen zu können, muss zunächst untersucht werden, wie sich die Befahrung der Gassen auf die Ausprägung des Spurbilds ausgewirkt hat. Mit dem Hintergrund der unter Kapitel 3.2.5 beschriebenen natürlichen Heterogenität der Versuchsfläche wurden im Juni 2013 zunächst die durch Befahrung entstandenen Fahrspuren bonitiert.

Der Befahrungszustand der Gassen wurde einen Monat nach ihrer Befahrung (Frühjahr 2013) sowohl fotographisch festgehalten (s. Anlage I) wie auch vermessen (s. Kapitel 4.3.2.1). Die Beschreibung der Fahrspuren erfolgte durch das Ausmessen der linken Fahrspurtiefe (Messung ab GOK) und der Vermessung des linken Wulstes der linken Fahrspur (s. hierzu Anlage XIII S. 181). Vermessen wurde die Wulstbreite und die Wulsthöhe ab GOK (s. Abbildung 16). Da sich die entstandenen Fahrspuren pro Gasse als relativ einheitlich darstellten, wurden pro Segment einer Gasse jeweils drei repräsentative Punkte vermessen und hieraus der Mittelwert gebildet.

Abbildung 16: Übersicht zur Lage der Beprobungspunkte innerhalb einer Gasse

Die Anzahl der Stubben wurde für jeden Gassenbereich in 1-Meterabschnitten erfasst. Die Stubben wurden zusätzlich in die Gruppen Stammdurchmesser < 7cm und Stammdurchmesser > 7 cm unterteilt.

Eine Einstufung der Spurausprägung erfolgte nach der Vorgehensweise der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft (WSL) in die von Lüscher et al. (2010) beschriebenen Fahrspurtypen (s. Abbildung 17). Die drei zu unterscheidenden Spurtypen werden wie folgt beschrieben:

Spurtyp 1: Bodenoberfläche soll auf der gesamten Reifenbreite nicht eingetieft sein (Eintiefung < 10 cm). Allenfalls Stollenabdrücke als Spuren der Befahrung sind zu sehen. Eine Verdrängung von Bodenmaterial und eine Aufwölbung zu Randwülsten hat nicht stattgefunden. In der Fahrspur ist die Streuauflage des Bodens erhalten.

Spurtyp 2: Die Bodenoberfläche ist reifenbreit deutlich eingetieft (Eintiefung meist kleiner als 10 cm), teilweise sind Randwülste (Aufwölbung durch Auspressen) erkennbar. Die Streuauflage in der Spur kann mit dem Oberboden verpresst worden sein.

Spurtyp 3: Gleisartige Spur (> 10 cm Eintiefung) mit deutlichen Randwülsten aus ausgequetschtem Oberboden. Oberboden (humoser Mineralboden) am Grund der Spur weitgehend fehlend, die Spur reicht bis zum Unterboden.

4.3.2.2 Erfassung der Bodenoberfläche

Die Bodenoberfläche der Fahrspur und des Mittelstreifens wurde im Jahr der Erstbefahrung bonitiert. Pro Gassensegment wurde hierfür ein 10 x 10 cm Zählrahmen auf die Bodenoberfläche aufgelegt. Der Zählrahmen wurden drei Mal im jeweiligen Segment willkürlich ausgeworfen.

Folgende Parameter wurden erfasst:

- Vorherrschendes Bodenmaterial an der Oberfläche (Ober- oder Unterboden)
- Abschätzung der Risslänge von Rissen mit einer Weite < 1mm, 1 3 mm und > 3mm
- Anzahl Bodentierlosung
- Anzahl Poren
- Bedeckungsgrad mit Moos

4.3.2.3 Ermittlung der krautigen Biomasse

Die Ermittlung der Biomasse erfolgte in den Jahren 2013 bis 2016 im Zeitraum Juli bzw. September/ Oktober. Auf den Versuchsgassen wurde das Wachstum der krautigen Vegetationsdecke erfasst, um sie mit der Auswertung der Bodenwassergehalte und der Ausbildung von Bodenaggregaten in Verbindung zu setzen. Pro Gassensegment wurde hierfür ein repräsentativer Bewuchs von ca. 1 x 0,5m ausgewählt auf welchem in vertikaler Richtung diejenige Pflanzenhöhe bestimmt wurde, in der die Biomasse der Krautschicht ihre maximale Dichte aufwies (Abbildung 18). In horizontaler Richtung wurde der Bodenbedeckungsgrad der Pflanzen erfasst. Aus dem Produkt des vertikalen und des horizontalen Pflanzenparameters ergibt sich der Biomasseindex (BMI), welcher somit die Intensität des Pflanzenbewuchses widerspiegelt.

Annäherungsweise kann der BMI in Biomasse umgerechnet werden. Hierfür kann z.B. die Trocken oder Frischmasse von Mähgut herangezogen werden. So liegt nach Hünting et al. (2009) der Trockenmassegehalt (TM) für schwer silierbare Grassilage ca. bei 260 g/kg. Ausgehend von einem Pflanzendeckungsgrad der Mähwiese von 100% und einer Aufwuchshöhe des Mähguts von 40 cm entspricht somit ein BMI von 4.000 einer Trockenmasse von ca. 260 g/kg (1 BME ≈ 0,065 g/kg TM).

Abbildung 18: Darstellung der maximalen Biomassendichte

4.3.2.4 Erfassung der Zeigerpflanzen

Zusammen mit dem Aufwuchs an krautiger Biomasse innerhalb der Versuchsgassen, wurde parallel der Anteil (Bodendeckungsgrad) an Zeigerpflanzen aufgenommen, die auf eine befahrungsbedingte Strukturstörung hinweisen können. Die Abschätzung der Biomasse erfolgte nach dem gleichen Prinzip wie in Kapitel 4.3.2.3 beschrieben. Eine Auflistung dieser Pflanzen findet sich in Clemens et al. (2008) und im Merkblatt Bodenschutz im Wald (Kanton Luzern 2013). Von 2013 bis 1016 setzten sich die dominierenden Zeigerpflanzen für Bodenverdichtung auf den Versuchsgassen wie folgt zusammen:

- Juncus effusus L., Binse
- Carex remota L., Winkelsegge
- Deschampsia cespitosa (L.), Rasenschmiele

4.3.2.5 Fotodokumentation der Perforationslöcher

Im August 2015 wurde eine Fotodokumentation von jeweils fünf Perforationslöchern in vier ausgewählten Gasse durchgeführt. In den Gassen G33 (S20), G25 (S20K), G46 (S50KP) und G49 (S50Kd) wurden ca. 40 cm tiefe und ca. 70 cm. breite Profile quer zur linken Fahrspur der Versuchsgasse gegraben. Jedes freigelegte Perforationsloch wurde in den Kameraeinstellungen "Landschaft" und "Vollautomatik" (Model Canon EOS 1100d) aufgenommen. Nach der Dokumentation einer Profilwand mit Perforationslöchern wurde die Wand bis zum Erreichen der nächsten Perforationslöcher hangaufwärts weiter gegraben.

4.3.2.6 Auszählung von Feinwurzeln an der Profilwand freigelegter Perforationslöcher

In den Gassen G33 (S20), G25 (S20K), G46 (S50KP) und G49 (S50Kd) wurden im August 2015 ca. 40 cm tiefe und ca. 70 cm. breite Profile quer zur linken Fahrspur der Versuchsgasse gegraben, um die Durchwurzelungsintensität im Bereich der freigelegten Perforationslöcher zu erkunden (s. Kapitel 4.3.2.5). Nach der Dokumentation einer Profilwand mit Perforationslöchern wurde die Wand bis zum Erreichen der nächsten Perforationslöcher hangaufwärts weiter gegraben. Pro Profilwand konnten somit entweder ein oder zwei Perforationslöcher erfasst werden (s. Tabelle 9). Die in Tabelle 7 in Klammern gesetzten Perforationslöcher wurden aus der Bewertung herausgenommen, um pro Gasse jeweils nur fünf Perforationslöcher zu bewerten.

An jeder Profilwand der freigelegten Perforationslöcher wurden anhand einer Schablone die Feinund Grobwurzeln (< 2 mm und > 2mm) ausgezählt. Die Schablone besteht aus 14 x 6 Feldern (s. Abbildung 19). Jedes Feld hat eine Bemaßung von 4 x 4 cm. Die Auszählung erfolgte an jeweils 5 bis 6 Perforationslöchern pro Gasse.

Die Position der Perforationslöcher im Bodenprofil kann durch das Raster des Zählrahmens beschrieben werden. Die Buchstaben stellen hierbei die y-Koordinaten des Rasters dar (s. Abbildung 19). Die in Klammern gesetzten Perforationslöcher wurden aus der Bewertung herausgenommen, um pro Gasse jeweils nur fünf Perforationslöcher zu bewerten.

Gasse	Profilwand 1	Profilwand 2	Profilwand 3	Profilwand 4
25 (S20 K)	(H)	B + L	Н	B + L
33 (S20)	Н	BC + K	AB + KL	
46 (S50 PK)	(1)	BC + M	GH	C + M
49 (S50 Kd)	A + M	G	AB + LM	

Tabelle 9: Position der Perforationslöcher im Zählrahmen

Abbildung 19: Schablone zur Wurzelzählung

Die Rasterbeschreibung setzt sich waagerecht aus den Buchstaben A bis N und senkrecht aus den Zahlen 1 bis 6 zusammen, so dass sich 84 Zellen ergeben. Dargestellt ist ein Stanzloch mit der Position H1 – H5.

4.3.2.7 Messung des pH-Werts in situ im Perforationslochbereich

In der Gasse 25 (S20K) wurde der pH-Wert mit einem In-situ-pH-Meter (Model PH-Meter PCE-PH20S) im Bereich eines Perforationslochs gemessen. Weitere Messungen konnten aufgrund eines Defekts am Messgerät nicht durchgeführt werden.

4.3.2.8 Messung des Kronenschlusses (Hemisphärenfotos)

Um die Auswirkung der Baumkronendichte (Lichteinfall, Interzeptionswasser, Evapotranspiration) auf die aufgenommenen Bodenparameter beurteilen zu können, wurde im Juni 2014 und 2016 der Kronenschluss mittels Hemisphärenfotos erfasst (s. Abbildung 20). Die Fotos wurden jeweils in der Mitte eines Gassensegments mit Hilfe einer Fisheyelinse aufgenommen und mit dem Programm Gap Light Analyzer (GLA) Version 2.0^{©1999} ausgewertet.

Die Aufnahmen wurden bei trockener Witterung mit vereinzelten Wolkenfeldern in einem Aufnahmezeitraum von 15.45 Uhr bis 19.15 Uhr getätigt. Die Aufnahmen wurden im Zentralbereich jeden Segments gemacht (s. Abbildung 16), so dass pro Gasse jeweils vier Bilder ausgewertet wurden.

Weitere Aufnahmedaten sind:

Kameratyp:	Canon EOS 1100d
Kameraeinstellungen:	mittlere Belichtung
Objektivtyp:	Sigma 4.5mm EX 2.8 HSM Canon AF
Auswertungsprogramm:	Gap Light Analyzer (GLA) Version 2.0 ^{©1999}
	(Simon Fraser University (SFU), Burnaby, Institute of Ecosystem Studies (IES), Milbrook, New, York, USA)

Programm GLA 2.0 Voreinstellungen:

- Parameter: sichtbarer Himmel unterhalb des Blätterdaches in %
- Betrachtete Fläche: 2/3 um den Zenit der gesamten 180° Aufnahme.
- Threshold (Schwellenwert): 230

Abbildung 20: Beispiel eines Hemisphären-

Dargestellt ist die Fotoaufnahme mit einer Fisheyelinse aus dem Zentralbereich der Gasse 49 im 4. Segment sowie die weiteren Auswertungsschritte zur Berechnung der Blattdachöffnung. Linkes Bild: Um einen Zentralpunkt im Zentrum des Fotos wird ein Raster (rotes Liniennetz) gelegt, welches den Bezugsraum der Auswertung darstellt. Rechtes Bild: Ab einer definierten Helligkeit der einzelnen Pixel wird das Foto in weiße Flächen (Himmel) und schwarze Flächen (Biomasse) unterteilt und deren Anteil innerhalb des Rasters berechnet.

Die Bodenansprache nach der bodenkundlichen Kartieranleitung 5 (KA5) erfolgte am 12.08.2015. Das Bodenprofil wurde in der Gasse 25 (Variante S20 K = flächig gekalkte Perforationslöcher) ca. im Gassenmeter 25 angelegt. Das Profil erfasste sowohl den Beginn des linken Randbereichs der Gasse wie auch den Beginn des Mittelstreifens. Die Maße des Profils betrugen ca. 1,40 m Breite und ca. 0,70 m Tiefe. Eine Bodenansprache erfolgte für den Randbereich und für den Bereich der Fahrspur. Die Aufnahmebögen sind der Anlage III zu entnehmen.

4.3.3 Messinstallationen

In den Versuchsgassen und im Bestand wurden Messinstallationen eingebaut die Aufschluss über die Wasserspannung des Bodens (Watermark[®]) und über den Lufthaushalt (CO₂-Sensoren und Eisenstäbe) lieferten. Ihre Verweilzeit im Boden reichte von wenigen Wochen bis über mehrere Monate.

4.3.3.1 Sensoren zur Messung der Boden-Wasserspannung (Watermark®)

Die Messung des Matrixpotentials erfolgte mit Watermark-Sensoren der Firma Irrometer (Riverside CA, USA).

Watermark Sensoren bestehen aus zwei Elektroden die in ein spezielles Matrixmaterial eingebettet und von einem gelochten Edelstahlmantel umhüllt sind. Der Boden stellt mit dem Inneren des Watermark Sensors ein Gleichgewicht der Saugspannung ein. Die Watermark - Matrix setzt einem Wechselstrom je nach Wassergehalt unterschiedlichen Widerstand entgegen, dieser Wert wird vom Auslesegerät in Saugspannung umgerechnet. Der Messbereich liegt zwischen 0 und 200 cbar (0 – 200 kPa). Watermark-Sensoren werden routinemäßig bei der Bewässerungssteuerung in Feldkulturen eingesetzt (MMM TECH SUPPORT 2016).

Die Sensoren waren von 2013 – 2015 in 6-10 cm Bodentiefe installiert. Im Jahr 2016 wurden Sensoren in eine Tiefe von 18 – 22 cm uGOK eingebaut.

Installierte Sensoren und Anzahl Messwerte

2013 Mai bis August

Von Mai bis August 2013 waren Sensoren nur in den Gassen 34 (S50.Kd), 32 (S50.KP), 37 (S50) und 48 (Referenz) installiert (s. Tabelle 10). Im Bereich 20 m ab Beginn der Versuchsstrecke befanden sich jeweils drei Sensoren im Abstand von 1,5 Metern in der Fahrspur und im Mittelstreifen (s. Abbildung 21). Ein weiterer Sensor war im unbefahrenen Bestand ca. 4 m seitlich der Rückegasse installiert. Alle Sensoren waren in einer Tiefenlage von 6 bis 10 cm uGOK eingebaut

Abbildung 21 Anordnung der Watermark-Sensoren in einer Rückegasse Mai-August 2013

2013/ V – VIII				
Gasse	Variante	Fahrspur	Mitte	Bestand
28	S 50			
27	S 20			
26	R			
25	S 20 K			
24	S 50 Kd	3	3	1
23	S 50 K			
31	К			
32	S 50 K P	3	3	1
33	S 20			
34	R			
35	S 50 P			
36	S 20 K			
37	S 50	3	3	1
38	S 50 P			
45	К			
46	S 50 K P			
47	S 50 K			
48	R	3	3	1
49	S 50 Kd			
Summe		12	12	4

Tabelle 10 Anzahl der installierten Watermark-Sensoren Mai-August 2013

September 2013 bis Dezember 2014

Im August 2013 wurden alle Gassen im Bereich 20 – 30 m ab Beginn der Versuchsstrecke mit WM-Sensoren bestückt. Alle Sensoren wurden in einer Tiefenlage von 6 bis 10 cm uGOK eingebaut. Auf

Grund der ungeraden Anzahl von Rückegassen und der nicht Beprobung der Gassen 39 bis 44 wurden acht Gassenpaare gebildet, die zusammen von einem WM-Logger erfasst wurden (s. Abbildung 22). Der Temperatur- und der WM-Sensor für den Bestand befanden sich bei diesen Gassen ca. in der Mitte zwischen den Gassenpaaren. Drei Gassen (G28, G38 und G47) erhielten jeweils einen eigenen WM-Logger bestehend aus sieben WM-Sensoren und einem Temperaturfühler, nach dem Muster, wie es bereits zu Anfang des Jahres 2013 angewandt worden war (s. Abbildung 21).

Abbildung 22 Positionierung der Watermark- ist aus Tabelle 11 ersichtlich. Sensoren September 2013 bis Dezember 2014 bei Zuordnung eines Loggers zu einem Gassenpaar

Die Anzahl der in den Gassen installierten Sensoren ist aus Tabelle 11 ersichtlich.

VIII 2013 – XII 2014				
Gasse	Variante	Fahrspur	Mitte	Bestand
28	S 50	3	3	1
27	S 20	2	1	
26	R	2	1	1
25	S 20 K	2	1	
24	S 50 Kd	2	1	1
23	S 50 K	2	1	
31	К	2	1	1
32	S 50 K P	2	1	
33	S 20	2	1	1
34	R	2	1	
35	S 50 P	2	1	1
36	S 20 K	2	1	
37	S 50	2	1	1
38	S 50 P	3	3	1
45	К	2	1	
46	S 50 K P	2	1	1
47	S 50 K	3	3	1
48	R	2	1	
49	S 50 Kd	2	1	1
Summe		41	25	11

Tabelle 11: Anzahl der installierten WM-Sensoren Sept 2013 – Dez 2014

April bis Oktober 2015

Von April bis Oktober 2015 wurde die Anzahl der beobachteten Gassen gegenüber dem Jahr 2014 reduziert. Die WM-Sensoren der Versuchsvarianten S 50, S20 und S20K (G 28, G 27, G 25 und G 36 – G 38) wurden mit einem Stechrohr herausgeholt. Die im Jahr 2015 installierten WM-Sensoren sind in Tabelle 12 wiedergegeben.

Tabelle 12: Übersicht der installierten WM-Sensoren 2015

2015/ IV - X				
Gasse	Variante	Fahrspur	Mitte	Bestand
28	S 50			
27	S 20			
26	R	2	1	1
25	S 20 K			
24	S 50 Kd	2	1	1
23	S 50 K	2	1	
31	К	2	1	1
32	S 50 K P	2	1	
33	S 20	2		1
34	R		1	
35	S 50 P			
36	S 20 K			
37	S 50			
38	S 50 P			

2015/ IV - X				
Gasse	Variante	Fahrspur	Mitte	Bestand
45	К	2	1	
46	S 50 K P	2	1	1
47	S 50 K	2	1	1
48	R	2	1	
49	S 50 Kd	2	1	1
Summe		22	11	7

<u>März bis Juni 2016</u>

Im März 2016 wurde die Untersuchung in den Maßnahmenvarianten auf den Tiefenbereich 20 cm uGOK ausgeweitet (s.

Tabelle 13 und Abbildung 23). Hierfür wurden aus allen Gassen mit Maßnahmenvarianten die Sensoren aus dem Tiefenbereich 6 cm uGOK ausgebaut und im dritten Segment der Gassen wieder in 20 cm uGOK eingebaut. Die Maßnahmenvarianten K, S20, S20 K, S50 Kd und S50 KP erhielten jeweils zwei Sensoren in der Fahrspur und zwei Sensoren in der Mittelspur. In den Referenzgassen wurden sowohl im Tiefenbereich 6 cm uGOK wie auch im Tiefenbereich 20 cm uGOK Daten erhoben. Die Versuchsvarianten S50, S50K und S50P wurden nur im Bereich der Mittelspur beobachtet (Ausnahme G36 und G37. Hier wurden Sensoren im Fahrspurbereich die noch aus dem Jahr 2014 im Boden eingeschlämmt waren, wieder an einen Datenlogger angeschlossen).

Abbildung 23: Positionierung der WM-Sensoren 2016

Skizze der Positionierung der WM-Sensoren 2016 in einer Höhe von ca. 25 - 35 m ab dem unteren Beginn des Versuchsabschnitts der Gassen. Tiefenlage der Sensoren = 6 - 10 und 18 - 22cm uGOK. Die Bestückung der Gassen mit WM- Sensoren erfolgte differenziert nach Referenzgassen (links) als Maßnahmenasse (rechts) oder als reduzierte Maßnahmengasse (S50K, S50 P, S50 jeweils ohne Beprobung der Fahrspur, nicht dargestellt).
		6 cm uGOK 20 c			20 cm uG	ЭК				
				ID-Numme	rn der Sen	soren			Logger-Nr. und	Anzahl
			1			301011		Summe	Lage Temperatur-	genutzter
Variante	Gasse	Spur	Mitte	Bestand	Spur	Mitte	Bestand	Sensoren	sensor/Logger	Anschlüsse
S50	28					1+2		2		
		1	1						1	6
S20	27				3 + 4	5+6		4		
	1			r						
R	26	7	8		10 + 11	12 + 13		9	2	6
	_			9	_		14 + 15		3	5
S20 K	25				16 + 17	18 + 19		4		
	_								4	6
S50 Kd	24				20 + 21	22 +23		4		
								-		
S50 K	23					24 + 25		2	-	
	_								5	6
K	31				26 + 27	28 + 29		4		
		1	1							1
S50 KP	32				30 + 31	32 + 33		4	-	
		1	1			a.a. a=			6	6
\$20	33				34 + 35	36 + 37		4	_	
					1		38 + 39		/	6
R	34	43	44			41 + 42		/		_
650 B	25	r	r	40		45 46			8	5
S50 P	35					45 + 46		2		
620 K	26	r	r	r	47.40	40 . 50				1
520 K	36				47 + 48	49 + 50		4	0	6
650	27					F4 . F2		2	9	0
350	37					21 + 22		Z		
	20	1	1		1	F2 - F4		2	10	2
350 P	38					53 + 54		2	10	2
N	45				55 +50	57 + 58		4	11	6
	16	1	1		F0 + 60	61 + 62		4	11	0
330 KP	40				59 + 60	01 + 02		4	10	4
SEOV	47	1	1		1	62 1 64		2	12	4
220 K	47	I	I		L	03 + 04		2		1
	10	6E	66	67	69 60	70 + 71		0	10	7
ĸ	48	65	00	0/	08 + 09	70+71	72 72	Э	13	/ 6
550 K4	40	1	1		74 + 75	76 77	/2 + /3	1	14	0
550 K0	49	-		2	74 + 75	7077	6	4	14	
Summe		5	5	5	24	зŏ	Ö		14	

Tabelle 13: Installierte Watermark-Sensoren ab März 2016

Die Tabelle 3 gibt die Nummerierung und Positionierung der WM-Sensoren im Jahr 2016 wieder. Die farbig hinterlegten Felder spiegeln die Zugehörigkeit der Sensoren zu den Loggern. Die Positionierung der Logger wird durch die Positionierung innerhalb der Tabelle wiedergegeben (Bestand (B) oder Mittelspur, mit B = horizontale Leerzeilen zwischen den Gassen).

Einbau der WM-Sensoren

1. Für den Einbau der WM-Sensoren wird mit einem Bohrstock ein Loch, entsprechend der gewünschten Tiefenlage des Sensors + ca. 2 cm, vorgebohrt. Es empfiehlt sich eine Markierung (z.B. Klebestreifen) am Bohrstock anzubringen.

2. Das Bodenmaterial des Bohrstocks wird in einen Behälter überführt und dort mit Wasser fließfähig verdünnt. Es ist darauf zu achten, dass hierfür nur Bodenmaterial verwendet wird, welches der Bodenart aus dem Tiefenbereich des Sensors entspricht. 3. Ein Teil des fließfähigen Bodenmaterials wird in das Loch eingefüllt. Nun wird der Sensor soweit in das Loch eingeführt und in den flüssigen Boden eingedrückt, dass er seine geplante Tiefenlage erreicht. Hierfür kann eine Stange verwendet werden, die ebenfalls mit einer Markierung versehen ist. Es sollte zu Beginn so viel Bodenmaterial eingefüllt worden sein, dass der Sensor bereits vollständig von dem flüssigen Bodenmaterial umflossen wird.

4. Das restliche Bodenmaterial wird nachgegossen. Die Wiederbefüllung des Böhrlochs sollte annähernd der Horizontierung des umliegenden Pedons entsprechen. Es ist auf einen innigen Kontakt des Sensors mit dem Boden zu achten.

Viedeo über Installation der WM-Sensoren https://www.mmm-tech.de/videos/96-watermark-installation

Bedienungsanleitung für WM-Monitor https://www.mmm-tech.de/de/downloads/send/9-watermark/29-wmmonitor-de

Ausbau der WM-Sensoren

Der Ausbau des WM- Sensors mit einer Handschaufel oder einem Spaten kann sehr mühselig sein. Außerdem besteht die Gefahr, dass das Sensorkabel durchtrennt wird. Die Hochschule Osnabrück hat daher für den Ausbau der Sensoren ein in den Boden einschlagbares Rohr mit einer Aussparung für das Kabel verwendet (s. Abbildung 24). Das Rohr besteht aus zwei Halbschalen, die nach Lösen der Flügelmutter voneinander getrennt werden können.

Abbildung 24: Ausstechrohr zum Herauslösen der WM-Sensoren

J-M	G28	G26	G24	G31	G32	G33	G35	G37	G38	G44	G46	G47	G48	G49
13-05			173		172			373					171	
13-06			308		308			58					310	
13-07					54			54					54	
13-08					92			91					91	
13-09	303	311	8	261				307	304	262		304		304
13-10	339	341	2	324		333	340	315	312	328		348		373
13-11	228	225	1	252		227	208	268	266	247		214		250
13-12	373	373		373		373	373	373	373	115	162	373		372
14-01	126	126		126		114	119	112	119		126	126		122
14-02	151	151	151	151		151	150	150	150		150	150		150
14-03	353	332	359	338		351	352	351	358		365	220		351
14-04	360	360	360	360		360	360	360	360		360	360		360
14-05	363	372	304	372		372	372	136	345		373	370		365
14-06	360	360	360	360		360	360	199	361		361	361		361
14-07	358	346	355	373		319	340	369	372		372	337		372
14-08	372	372	368	364		334	355	367	373		373	373		352
14-09	251	263	282	258		278	277	286	254		281	275		254
14-10	366	373	343	353		372	372	363	372		362	373		369
14-11	294	360	360	360		360	360	360	360		360	360		360
14-12		53	54	54		54	54	54	54		54	53		53

Tabelle 14: Aufschlüsselung der Anzahl valider Watermark-Messwerte im Bestand ca. 5 m neben einer Rückegasse aufgeschlüsselt nach Monaten 2013 - 2014 und Rückegassen.

4.3.3.2 CO₂-Sensoren mit Datenlogger

Technische Beschreibung der Messeinrichtung

Für die Messung der CO₂-Konzentration in der Bodenluft wurden im Projekt eigene Messeinheiten entwickelt. Eine Messeinheit (Abbildung 25) besteht aus einem NDIR-Sensor (C2 Infrared no. CO₂-Sensor part 2122BC2, http://www.euro-gasman.com, Messbereich 0-20% CO₂), eingebaut in einen geschlossenen Zylinder (60 mm Durchmesser, 74 mm Länge). Die Sensoröffnung ist an eine leicht konische Sonde angeschlossen (Durchmesser 9...10 mm), Abbildung 25: CO2-Sensor und Mini-Erdbohrer die 10 cm aus dem Zylinder herausragt und am zum Vorbohren des Sonden-Einführlochs distalen Ende auf einer Strecke von 22 mm per-

foriert ist. Das Gehäuse und die Sonde wurden aus massivem Polyoxymethylen (POM) gedreht. Ein 50 cm langes Kabel verbindet den Sensor mit einem zweiten wasserdichten Gehäuse, in dem drei AA Alkalibatterien und ein Modul für das Datalogging und die Kommunikation untergebracht sind. Parallel zur CO₂-Konzentration wird von einem Bauteil auf der Platine des Sensors ein Messwert der Temperatur und der relativen Luftfeuchte im Sensorgehäuse an den Datenlogger gesendet. Insgesamt wurden 54 CO₂-Messeinheiten gebaut. Die Anzahl der im Feldversuch Solling zur Verfügung stehenden Messeinheiten war 30 im Jahr 2013 (ab September), 32 im Jahr 2014, 39 im Jahr 2015 und 42 im Jahr 2016.

Platzierung und Einbau der Sensoren

Für die Installation des Sensors im Boden wurde eine kleine Grube ausgehoben ca. 20 cm x10 cm x 6 cm tief. An einer Stirnwand dieser Grube wurde mit einem kleinen Bodenbohrer (9,5 mm Durchmes-

ser) in einem Winkel von ca. 13° zur Bodenoberfläche ein Loch vorgestochen. Die Sonde des Sensors wurde dicht schließend in das vorgebohrte Loch eingeführt, so dass die Perforation sich in ungefähr 6 cm Bodentiefe befand (Abbildung 26, Abbildung 27). Anschließend wurde die Grube mit dem Sensorgehäuse wieder mit Boden verfüllt und mit einer Paste aus nassem Lössboden eingeschlämmt. Von September bis Dezember 2013 waren Sensoren auch einfach über ein vertikal vorgebohrtes Loch im Boden platziert. Das Sensorgehäuse stand dann auf der Bodenoberfläche.

Abbildung 26 Positionierung des CO₂-Sensors auf Messtiefe 6 cm

Das Gehäuse mit der Stromversorgung und dem Datenlogger wurde auf die Bodenoberfläche gelegt bzw. in einem Drahtkorb befestigt, der zum Schutz vor Störungen durch Wildtiere über der Messstelle mit Erdnägeln fixiert war. Messwerte von [CO₂] sowie der Temperatur und der relativen Luftfeuchte im Sensorgehäuse wurden durch den Datenlogger stündlich abgerufen und in einem EEPROM gespeichert. Durch die Konstruktion ist es möglich, die gespeicherten Daten auszulesen und einen Wechsel der Batterien vorzunehmen, ohne den im Boden vergrabenen Sensor mechanisch zu beeinflussen.

Abbildung 27 Phasen des Sensoreinbaus. li. nach Einführen in Sondenloch, mi. Einschlämmen, re. Einbau abgeschlossen. Der Bohrer deutet die Lage der Sonde an.

Im ersten Einsatzjahr der Messeinheiten 2013 kam es kurzzeitig zu Funktionsstörungen durch eindringendes Wasser und/oder kondensierende Luftfeuchtigkeit. Für den Einsatz im Jahr 2014 wurden deshalb folgende Verbesserungen vorgenommen. Erstens wurde die Basis der Sensorsonde mit einer Wasser abweisendem PTFE-Membran verschlossen, um das Eindringen von Wasser zu verhindern (Porex PM 2010; http:// www.porex.com). Zweitens wurden das Sensorgehäuse und das Gehäuse des Datenloggers mit Silicagel-Trockenmittel ausgestattet, um das Ansteigen der Luftfeuchtigkeit zu verlangsamen.

Im März 2016 erfolgte eine Ausweitung der Datenerhebung zur CO₂-Konzentration in den Tiefenbereich 20 cm uGOK. Hierfür wurden aus allen Gassen mit Maßnahmenvarianten die Sensoren aus dem Tiefenbereich 6 cm uGOK ausgebaut und im ersten oder zweiten Segment der Gassen wieder in 20 cm uGOK eingebaut. Es wurden die Maßnahmenvarianten S20 (Gasse 27 und 33), S20 K (Gasse 25 und 36), S50 Kd (Gasse 24 und 49) mit jeweils zwei Sensoren in der Fahr- und Mittelspur bestückt. Alle Referenzgassen behielten jeweils einen Sensor in 6 cm uGOK in der Fahr- und Mittelspur sowie im Bestand und erhielten zusätzlich in diesen Bereichen jeweils zwei Sensoren in 20 cm uGOK. Der Einbau der Sensoren in 20 cm Tiefe erfolgte so, dass zuerst ein Rohr mit 61 mm Außendurchmesser in einem Winkel von 80° zur Geländeoberkante 13 cm tief in den Boden geschlagen wurde. Anschließend wurde mit Hilfe eines 9,5 mm starken Rohrs in einer Führungsschablone ein weiteres Loch bis auf ca. 21 cm Tiefe unter GOK eingeschlagen, in das der Sensorrüssel des CO₂-Sensors eingeführt wurde. Das Loch oberhalb des Sensorgehäuses wurde wieder mit Bodenmaterial eingeebnet. Um den Schaft des Sensorrüssels gewickeltes Isolierband verhinderte einen Gasaustausch-Nebenschluss an der Außenseite des Sensorrüssels. Durch den 80°-Winkel zu Geländeoberkante wird erreicht, dass sich die Messzone des Sensors über einer ungestörten Bodenoberfläche befindet.

Messzeiträume und Sensorpositionen

Die Anzahl der in den Jahren 2013 bis 2016 installierten CO₂-Sensoren ist in Tabelle 15 dokumentiert.

Jahr			2013	2014	2015	2016	2016
Messzeitra	um (KW	/)	36-43	10-40	16-42	11-24	11-24
Messtiefe				6 0	cm		20 cm
Variante	Gas	se-Nr.	Anza	hl insta	llierte C	O₂-Sen	soren
unbefahre	ner Bes	stand	2 ^{a)}	2	6	2	4
Mittelstrei	fen						
Referenz		G26	1 ^{b)}	1	3	1	2
		G48	1 ^{a)}	1	3	1	2
Kalk		G31	1	1			
		G45	1	1			
S20		G27					2
		G33					2
S20K		G25	1	1			2
		G36	1 ^{b)}	1			2
S50		G28					
		G37					
S50K		G23	1 ^{b)}	1			
		G47	1	1			
S50Kd		G24	1	1			
		G49	1	1			2
S50P		G35					2
		G38					
S50KP		G32	1 ^{a)}	1			
		G46	1 ^{a)}	1			
Fahrspur					1	1	
Referenz		G26	1 ^{a)}	1	3	1	2
		G48	1 ^{a)}	1	3	1	2
Kalk		G31	1	1	3		
		G45	1	1	3		
S20		G27	1	1			2
		G33	1	1			2
S20K		G25	1	1			2
		G36	1	1			2
S50		G28	1 ^{a)}	1			
0501		G37	1" [/]	1	-		
S50K		G23	1.0		3		
050167		G47	1	1	3		
S50Kd		G24	1"		3		2
0505		G49		1	3		2
S50P		G35					
0501/0		G38		1			
S50KP		G32		1	_		
		G46		1	3		

Tabelle 15 Anzahl der in den Jahren 2013 bis 2016 installierten CO₂-Sensoren

^{a)} Messung bereits ab KW 20; ^{b)} Messung nur bis KW 37; ^{c)} nur KW 20-36

In den Jahren 2013 und 2014 waren die Sensoren in Untersuchungssegment 2 installiert (ca. 20-22 m ab Beginn der Untersuchungsstrecke). Im Jahr 2015 wurde auf die gekalkten Varianten ohne Bodenperforation und mit S50 Bodenperforation fokussiert. In den entsprechenden Gassen wurden jeweils 3 Sensoren installiert und zwar an Positionen in den Untersuchungssegmenten 1, 3 und 4. Die genauen Positionen wurden mit Hilfe von Zufallszahlen festgelegt. Im Jahr 2016 befanden sich die Sensoren wieder in Untersuchungssegment 2 der Rückegassen.

Datensäuberung

Ein Teil der aufgezeichneten CO₂-Konzentrationen war auf Störungen zurückzuführen und wurde von der Auswertung ausgeschlossen. Der Ausschluss von Werten folgte folgenden Regeln:

- Phasen mit Messwerten von 0% CO₂, häufig auch Oszillationen zwischen 0% und 20% zeigen Funktionsstörung an und werden nicht ausgewertet.
- Nach dem Neueinbau von Sensoren wird ein Zeitraum von 48 Stunden als Anpassungsphase gesehen und von der Auswertung ausgeschlossen.

Tabelle 16 dokumentiert die Anzahl der nach der Datensäuberung verbliebenen validen stündlichen Messwerte aufgeschlüsselt nach Monaten und Sensorpositionen.

Tabelle 16 Aufschlüsselung der Anzahl valider stündlicher [CO2]-Messwerte in den Jahren 2013 und 2014

	Monat im Jahr 2013								Monat im Jahr 2014											
Position	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
G28S	342	244	744	744	717	435	63				3			666	745	744	720	746	720	116
G27S														272	268	746	720	745	720	115
G26B	343	718	744	744	719	744	480	239			696	720	744	700	721	745	720	744	720	116
G26M											697	594	344	83	77	746	720	744	720	116
G26S		548	744	744	719	744	479	237			696	720	744	700	744	209	720	744	720	117
G25M					637	744	465	48			183	720	743	438	723	746	720	744	720	116
G25S											697	720	743	701	534	33	720	744	720	116
G24M					636	744	478	238			113	720	743	644	731	177		684	720	116
G24S	341	242	744	744	83						697	720	743	701	744	744	720	743	720	115
G23M											617			645	745	744	720	744	720	115
G23S											697	720	743	701	745	745	720	744	720	115
G31M					614	744	479	238			540	720	745	697	745	744	720	742	720	116
G31S					614	744	479	238			617		344	728	745	744	720	745	720	30
G32M	341	240	744	744	89						696	720	743	701	745	744	720	742	720	116
G32S	264	104	744	744	719	744	479	232			696	720	743	701	745	744	720	742	720	116
G33S					614	744	479	238			696	720	743	728	745	744	720	744	720	116
G35S					613	744	132				695	720	209	642	745	744	720	744	720	115
G36M											696	720	744	701	744	745	719	744	720	115
G36S					614	744	62					679	745	40	612	746	720	744	720	115
G37S	37	103	744	744	719	744	478	238			696	720	722	637	554	745	720	744	720	115
G38S					612	744	479	238			450	556	744	726	744	745	720	745	720	114
G45M					612	744	479	238			696	720	743	84	612	746	720	744	720	710
G45S					612	744	479	238			696	719	112	660	744	745	720	744	720	710
G46M	341	237	744	743	620	744	414	238			697	720	743	553	664	745	720	745	720	14
G46S	37	92	648	740	687	5					697	720	744	701	745	744	720	742	720	116

			Мо	nat im	Jahr 20	13			Monat im Jahr 2014										
Position	5	6	7	8	9	10	11	12	1 2	3	4	5	6	7	8	9	10	11	12
G47M					611	744	479	205		697	720	743	700	744	745	720	742	720	117
G47S					611	744	479	238		697	720	743	700	744	211	720	744	720	116
G48B	341	719	744	740	719	744	62			697	720	743	700	744	211	720	744	720	116
G48M	341	238	744	743	720	744	479	238		696	720	743	700	725	744	720	745	720	116
G48S		101	744	743	719	744	479	238		696	720	743	700	744	745	720	745	720	116
G49M					374	216	479	238		697	720	744	700	725	745	720	745	720	116
G49S					611	744	479	238		697	720	743	682	726	744	720	745	720	116

4.3.3.3 Belüftungsverhältnisse (Eisenstabmethode)

Mit der sogenannten Eisenstabmethode wird sich das Rosten von Eisen zur Abschätzung der Belüftungsverhältnisse im Boden zu Nutze gemacht. Hierfür werden ca. 30 cm lange, blanke Eisenstäbe, mit einem Durchmesser von ca. 8 mm (Typ Blankstahl S235JRC+C) in den Boden geschlagen welche dann durch die im Boden vorherrschenden Wasser- und Belüftungsverhältnisse, ihr äußeres Erscheinungsbild verändern. Nach einer Verweilzeit von mehreren Wochen werden die Stäbe aus dem Boden herausgezogen (Tabelle 21) und ihr Verrostungsgrad visuell klassifiziert (Tabelle 17). Als Ergebnis liefert die Eisenstabmethode einen Einblick, ob sich der Boden im Umfeld des Eisenstabs im betrachteten Zeitraum in einer vorwiegend O₂-reichen oder O₂-armen Belüftungssituation befunden hat. Ein besonderer Vorteil dieser Methode ist, dass seine einfache Anwendung die Betrachtung größer Flächen ermöglicht.

Termin	Datum/ Zeitraum	Gassen	Anzahl Stäbe		
			gesamt		
1	16.05 26.06.2013	alle	194		
2	26.06 02.09.2013	G28, G27, G26, G25	45		
3	03.09 02.10.2013	alle	190		
4	04.04 30.06.2014	alle	187		
5	18.09 17.10.2014	alle	190		
6	16.09. – 16.10.2015	G26, G24, G23, G31, G45, G47, G48, G49	192		
Tabelle 22	1: Expositionszeiten der Eis	senstäbe			

Owens et al. (2008) setzten die Ausprägung der Verrostung in Zusammenhang mit dem Sauerstoffgehalt des Bodens und fanden eine enge Korrelation heraus. Tabelle 17 gibt die Ergebnisse von Owens et al. wieder. Demnach kommt es bei einem Sauerstoffgehalt > 5 % vol. und feuchtem Boden zu deutlicher Rostbildung. Bei freiem Wasser und weniger als 2 mg/l Sauerstoff im Bodenwasser entsteht auf der Metalloberfläche ein stumpfer, schwarz-grauer Belag (Patina). Bei starker Trockenheit im Boden bleibt das blanke Eisen unverändert, was in der Regel mit hohen Sauerstoffkonzentrationen (> 12 % vol.) einhergeht.

Sauerstoffgehalt	Verfärbung der Eisenstäbe	Darstellung					
< 2 mg/l (O ₂ gemessen in der Bodenlösung bei Wassersätti- gung)	grau bis schwarz, matt, stumpf, kein Rost, Patina	Dark Coatings 1.0 mg J ⁻¹ O ₂ Cieno Soil <u>Iem</u>					
2% - 5% O₂ in der Bodenluft	indifferente Rostausbil- dung, als Hinweis auf klein- räumige Unterschiede im O ₂ -Gehalt.	Pore-Shaped Coatings 4.0% O ₂ 1 cm Variegated Pattern 3.1% O ₂ 1 cm Pore-Shaped Coatings					
> 5 % O₂ in der Bodenluft + Bodenfeuchtig- keit	vollständige, intensive Be- rostung	A PreTreatment Control 9.3% O ₂ Nada 8.9% O ₂ Icm B PreTreatment Control 6.2% Telferner 6.4% O ₂					
> 12 % O₂ in der Bodenluft + Trockenheit	Berostungsintensität nimmt ab. Der Stab bleibt stellenweise unverändert, blank.	C Pre-Treatment Control					

Tabelle 17: Berostung der Eisenstäbe in Abhängigkeit zum Sauerstoffgehalt.

Quelle und Bilder: Owens et al. 2008, verändert

Auswertung des Erscheinungsbilds

Die Bestimmung der Belüftungsverhältnisse erfolgte anhand des Erscheinungsbildes der Eisenstäbe. Das Erscheinungsbild wurde in sechs Kategorien unterteilt, welche die Sauerstoffverhältnisse im Boden wiederspiegeln (Tabelle 18). Jeder Stab wurde hierfür in neun Abschnitte von jeweils drei Zentimetern unterteilt, von denen jeder Abschnitt einer der sechs Kategorien zugeordnet wurde.

Es wird davon ausgegangen, dass die Kategorie 0 " Patina > 90 % mit Sauerstoffgehalten kleiner als 2 mg/l widerspiegeln, die gesichertste Aussagekraft über eine vorliegende Belüftungsstörung darstellt. Im Ergebnisteil dieses Berichts wird sich daher ausschließlich auf das Vorkommen der Kategorie 0 bezogen.

Kategorie	Erscheinungsbild	Verfärbung	Sauerstoffgehalt		
0	Patina grau, matt, ohne Rost	Patina > 90 %	< 2 mg/l		
1	Patina + Rost Kleinräumiger Wechsel zwischen Patina, Rost und Blank	Patina: > 50 % bis < 90 % Rost: 10 - 50 %	$2\% - 5\% O_2$ in der Bodenluft		
2	Patina + Blank Kleinräumiger Wechsel zwischen Patina, Rost und Blank	Patina: > 50 % bis < 90 % Blank: 10 - 50 %			
3	Rost vollständige, intensive Berostung	Rost > 50 %	> 5 % O ₂ in der Bodenluft + Bodenfeuchtigkeit		
4	Rost + Blank Intensive Berostung mit zwischenge- lagerten, blanken Abschnitten	Rost: 10 -50 % Blank: > 50 – < 90 %	> 5 % O ₂ in der Bodenluft mit abnehmender Bodenfeuchtigkeit		
5	Blank Bis auf kleinste Stippen sind keine Veränderungen am Stab zu erken- nen	Blank > 90 %	> 12 % O ₂ in der Bodenluft + Trockenheit		

Tabelle 18: Kategorisierung des Berostungsgrades der Eisenstäbe

Dargestellt ist die Einstufung des Erscheinungsbild der Eisenstäbe auf den RÜWOLA-Versuchsflächen in Verbindung zu den erwarteten Belüftungs- und Feuchtigkeitsverhältnissen nach Owens et al. (2008).

Verifizierung der Eisenstabmethode

Die Eisenstabmethode wurde zu verschieden Terminen im Jahresverlauf und zunächst mit zwei verschiedenen Klassifizierungsmethoden (3- und 6-stufige Klassifizierung) und unterschiedlichen Expositionszeiten durchgeführt (weitere Ausführungen zur Vergleichbarkeit der beiden Klassifizierungen und der Expositionszeiten sind Anlage VII S. 163 und Anlage VIII zu entnehmen). Eine Übersicht über die Messtermine bietet die Tabelle 19. Die 3-stufige Klassifizierung betrachtet vorrangig den Rostanteil der Eisenstäbe und unterscheidet bei rostfreien Stäben nicht, ob diese aus Mangel an Feuchtigkeit (blanke, glänzende Stäbe) oder aus Mangel an Sauerstoff (Patinabildung im feuchten Milieu) keinen Rost ansetzen (Tabelle 20).

Der Vergleich der beiden Klassifizierungen im Zeitraum 2013 bis 2014 ergab, dass auf Grund der Witterungsverhältnisse für die unterschiedlichen Klassen nur ein geringer Fehler für die Ergebnisse zu erwarten ist (s. Anlage VIII, S. 166). Prinzipiell ist die 6-stufige Klassifizierung auf Grund ihres höheren Differenzierungsgrades zu bevorzugen.

Die Beobachtung der Verweilzeit der Eisenstäbe im Boden ergab, dass eine Ausdehnung über länger als sechs Wochen, nicht zu einem stärkeren Verrostungsgrad führte. Ab dem Messtermin Nr. 5 (Herbst 2014) wurde daher nur noch mit einer Bodenverweilzeit von ca. 4 Wochen gearbeitet.

				Anzahl S	täbe ge	samt	Klassifizierung der
Zeitraum	von	bis	Dauer	Bestand	Mitte	Spur	in 3 cm-Abschnitte
1	16.05.2013	26.06.2013	41	47	75	72	3-stufig
2	26.06.2013	23.08.2013	68	15	15	15	3-stufig
3	03.09.2013	02.10.2013	29	36	76	76	6-stufig
4	04.04.2014	30.06.2014	87	39	75	73	3-stufig
5	18.09.2014	17.10.2014	31	38	75	76	6-stufig
6	16.09.2015	16.10.2015	31	63	64	64	6-stufig

Tabelle 19: Übersicht der Messtermine und ihrer Klassifizierungsmethode

Tabelle 20: Unterschiede zwischen der 3- und der 5-stufigen Klassifizierung

Kategorie	3-stufig	6-stufig
0	rostfreie Stäbe mit Patina und blanke Stäbe	Patina, > 90 %
1	< 1/3 Rost	Patina + Rost
T		Patina > 50 % und < 90 %,
2	> 1/3 Rost	Patina + Blank, Patina > 50 % und < 90 %
3		Rost, > 50 %
4		Rost + Blank, Rost 10 -50 % , Blank 50 – 90 %
5		Blank, > 90 %

Termin	Datum/ Zeitraum	Gassen	Anzahl Stäbe							
			gesamt							
1	16.05 26.06.2013	alle	194							
2	26.06 02.09.2013	G28, G27, G26, G25	45							
3	03.09 02.10.2013	alle	190							
4	04.04 30.06.2014	alle	187							
5	18.09 17.10.2014	alle	190							
6	16.09. – 16.10.2015	G26, G24, G23, G31, G45, G47, G48, G49	192							
Taballa 21	Johalla 21, Expanitionszaitan dar Eisanstäha									

Tabelle 21: Expositionszeiten der Eisenstäbe

Ausbringung der Eisenstäbe in der Fläche

In den Ausbringungszeiträumen 1 bis 5 (Tabelle 21) wurden in jeder Rückegasse (Ausnahme Termin 2) in der linken Fahrspur und im Mittelbereich pro Segment jeweils ein Stab in den Boden getrieben. Im Bestand wurden pro Gasse 2 Stäbe eingetrieben. Insgesamt kamen so pro Gasse 10 Stäbe zum Einsatz. Die beprobten Segmente im Bestand rotierten hierbei, so dass pro Termin entweder Segment 1 und 3 oder Segment 2 und 4 untersucht wurden. Die Gassenmeter der Positionierung wird wiederum durch die Tabelle der Zufallszahlen ermittelt (Anlage S. 156).

Im Jahr 2015 (Termin 6) erfolgte eine Erhöhung der Stabanzahl auf ausgewählten Gassen (s. Tabelle 21). An diesem Termin wurden pro Bereich in jedem der vier Segmente jeweils zwei Eisenstäbe eingesetzt, so dass insgesamt 24 Stäbe pro Gasse zum Einsatz kamen.

4.3.3.4 Bodentemperatur

Die Bodentemperatur wurde mit Temperatursensoren erfasst, die in 8-10 cm Tiefe installiert waren und deren Messwerte mit den Watermark-Datenloggern aufgezeichnet wurden. Von Mai bis August 2013 befanden sich Temperatursensoren in den Mittelstreifen der Gassen G28, G26, G24, G32, G37, G46 und G48. Ab September 2013 waren die Temperatursensoren im Bestand positioniert. Zusätzlich wurde in den Sensorgehäusen der CO2-Sensoren die Temperatur registriert. Diese Messwerte sind tiefenmäßig nicht genau zuzuordnen. In der Regel entsprechen sie einer Bodentiefe von 2 bis 5 cm.

4.3.4 Entnahme von Bodenproben

Die Entnahme von gestörten und ungestörten Bodenproben (s. Tabelle 7) erfolgte in den Jahren 2013 bis 2015. Hierbei entspricht die Bohrstockkampagne einer intensiven, flächigen Beprobung während die Entnahme von Stechzylindern eine orientierende Datenerhebung darstellt.

4.3.4.1 Bohrstock-Proben (Pürckhauer)

Um die Auswirkungen der angewandten Maßnahmen auf die Parameter des organischen Kohlenstoffgehalts (C_{org}), den gravimetrischer Wassergehalt sowie den pH-Wert nachverfolgen zu können, erfolgte jeweils im Herbst der Jahre 2013 und 2014, in allen 19 Gassen, eine Bodenprobenentnahmen mittels einer Bohrstockmesskampagne.

Jeweils zwei Segmente pro Gasse und Jahr wurden im Bereich der linken Fahrspur und im Mittelstreifen beprobt (Abbildung 28). Im Jahr 2013 wurden die Beprobung in den Segmenten eins und drei und im Jahr 2014 in den Segmenten zwei und vier durchgeführt. An den drei Referenzgassen wurde zusätzlich zum befahrenen Bereich auch im Bestand beprobt.

Die Positionierung der Einstiche innerhalb der Segmente erfolgte randomisiert mit den in Anlage II aufgeführten Zufallszahlen. Im Bereich jeder Zufallspositionierung und jeweils zwei Meter oberhalb dieser Positionierung erfolgten jeweils 3 Einschläge des Bohrstocks. Die Einschläge erfolgten quer zur Fahrspur und lagen ca. 20 cm auseinander (Abbildung 28). Aus dem Bodenmaterial der so erhaltenen sechs Einstiche pro Segment und Gassenbereich, wurden in den Tiefenstufen 0-5 cm, 10-20 cm und 30-40 Mischproben erstellt. Um genügend Bodenmaterial aus der Tiefenstufe 0-5 cm zu erhalten

erfolgte zusätzlich eine Ausschabung der Bohrlochwandung dieser Tiefenstufe mittels eines Löffels. Die Bodenwülste und Perforationslöcher wurden nicht beprobt.

Aus jedem Probenentnahmetermin resultierten 246 Mischproben. Das Bodenmaterial wurde in Polyethylenbeuteln in das bodenkundliche Labor der Hochschule Osnabrück transportiert und innerhalb der folgenden drei Wochen auf die Parameter gravimetrischer Wassergehalt, pH-Wert, Carbonatgehalt und C_{org} analysiert. Für die Analysen wurden folgende Vorgehensweisen angewandt:

- Bestimmung des gravimetrischen Wassergehalts nach DIN EN ISO 17892-1 (2014) (Vorläufer: DIN 18121-1 (1998)
- Bestimmung des pH-Werts nach DIN ISO 10390 (2005)
- Bestimmung des Carbonatgehalts nach DIN ISO 10693 (1997)
- Bestimmung des organischen Kohlenstoffs nach DIN EN ISO 15936 (2012). Die Kohlenstoffbestimmung erfolgte dabei am Carbon Sulfur Determinator ELTRA CS-500, ELTRA GmbH 42781 Haan / Deutschland.

Abbildung 28: Verteilung der Bohrstockeinstiche während der Pürckhauerbeprobung.

Dargestellt ist die Positionierung der jeweils sechs Pürckhauereinstiche innerhalb eines Gassenbereichs zur Erstellung von Mischproben. Die Abbildung stellt beispielhaft die Beprobung einer Referenzgasse mit der Beprobung des Bestands dar.

4.3.4.2 Entnahme von Stechzylindern (100cm3)

Zur Bestimmung der Trockenrohdichte des Bodens (TRD) und des Steingehalts wurden Stechzylinderproben des Volumens 100 cm³ entnommen. Die Probenahme erfolgte im Jahr 2013 orientierend in 9 Gassen (s. Tabelle 7). Im Jahr 2015 wurden im Rahmen der Perforationslochuntersuchung aus vier weiteren Gassen Stechzylinderproben entnommen. Die Analysen erfolgten nach DIN 11272:2014-06.

Im Jahr 2013 erfolgte die Beprobung jeweils 1 m unterhalb des 1. Segments in den Tiefenstufen 5 – 10 cm uGOK und 30 – 40 cm uGOK, in den Bereichen Spur, Mitte und Bestand. Pro Tiefenstufe wurden jeweils zwei Stechzylinder entnommen. Insgesamt wurden 120 Stechzylinder ausgewertet.

Im Jahr 2015 erfolgte die Beprobung ausschließlich in der Fahrspur, in den mit Perforationslöchern versehenen Gassen G25, G33, G46, G49. Die beprobten Tiefenstufen lagen in den Bereichen 5 - 10

cm uGOK und 25 - 30 cm uGOK. Pro Tiefenstufe wurden jeweils vier Stechzylinder entnommen. Insgesamt wurden 32 Stechzylinder ausgewertet.

4.3.4.3 Entnahme von Stechzylindern (865 cm³)

Zur Bestimmung des Schrumpfverhaltens bindiger Böden und der Atterberg´schen Grenzen wurden sechs Stechzylinder des Volumens 865 cm³ im Labor für Technik der Hochschule Osnabrück untersucht. Die Stechzylinder wurden ca. 2 m unterhalb und oberhalb des Versuchsabschnitts der Gassen G26, G38 und G48 aus der Mittelspur, im Tiefenbreich 5 – 25 cm uGOK, entnommen. Parallel zu diesen Untersuchungen wurden die Parameter Porosität, Trockenrohdichte, Korndichte und Bodenart nach DIN 18196 bestimmt.

Zur Ermittlung der Größe der Schrumpfung (Abnahme des Bodenvolumens) wurde diese mit der Verringerung des Porenanteils bei Austrocknung gleich gesetzt (s. Abbildung 29). Hierfür galten folgende Definitionen und Gleichungen:

- Abnahme des Porenanteils Δn = n₁ – n₂
- Volumen der Probe nach der Schrumpfung $V_{neu} = V_1 \Delta n \times V_1$
- Kantenlänge nach der Schrumpfung a_{neu} = ³V V_{neu}
- lineare Schrumpfung (absolut) $\Delta a = a_1 - a_{neu}$
- lineare Schrumpfung (Verhältniswert)
 s = Δa : a₁

Die bei den untersuchten Böden abgeleiteten Veränderungen der Porenanteile haben sich nur durch die Verringerung des Wassergehalts eingestellt. Verdichtungen durch Auflast etc. waren nicht gegeben. Vereinfachend wurde vor Schrumpfbeginn für die Bodenproben ein Bodenvolumen $V_1 = 1000$ cm³ in Form eines Würfels mit einer Kantenlänge $a_1 = 10$ cm angenommen.

Die Bodenarten nach DIN 18196 wurden durch Laboranalysen ermittelt. Die Berechnungen erfolgten für den Boden zum Zeitpunkt der Probenahme. Die Berechnungen wurden mit den Formeln der Dichtebestimmung nach DIN EN ISO 17892-2 (2015) durchgeführt.

Die Ergebnisse der Untersuchungen sind dem Anlage IX und Anlage X bzw. Kapitel 3.5.5 zu entnehmen.

Abbildung 29: Skizze zum Schrumpfverhalten bindiger Böden

4.3.4.4 Entnahme von gestörten Bodenproben

Zur Bestimmung der Textur mittels Aräometer und Siebung nach DIN ISO 11277 (2002) wurden am 18.09.2014 gestörte Bodenproben aus den Gassen G26, G23, G36, und G47 entnommen. Die Entnahme erfolgte bei 10m und 40m des Mittelbereichs der Fahrspuren jeweils in den Tiefenstufen 10 – 20 cm uGOK und 30 – 40 cm uGOK. Die Textur jeder Probe wurde als Doppelbestimmung durchgeführt. Die Ergebnisse der Kornanalyse sind in Tabelle 22 bzw. Kapitel 3.5.5 wiedergegeben.

Zur Bestimmung des pH-Werts im Bereich der Perforationslöcher wurden am 13.08.2015 jeweils drei Bereiche der freigelegten Perforationslöcher beprobt. Es wurde der Bereich 3-8 cm links neben dem Perforationsloch, 3 – 8 cm unterhalb des Perforationslochs und das Material innerhalb der Perforationslöcher beprobt. Das Probenmaterial von jeweils fünf Perforationslöchern wurde zu einer Mischprobe zusammengeführt. Pro Gasse entstanden somit drei Mischproben der unterschiedlichen Perforationslochbereiche.

	Segment	Tiefe	Beutelprobe	Steine	Steingehalt	Ton	Schluff	Sand	Bodenart
		cm	g	g	%	%	%	%	KA5
G 26	4	15	57,64	5,34	9,3	18,5	66,6	14,9	Ut4
G 26	4	35	75,77	4,82	6,4	18,5	67,2	14,4	Ut4
G 26	1	15	54,93	0,58	1,1	14,5	76,0	9,5	Ut3
G 26	1	35	89	0,57	0,6	14,5	76,2	9,3	Ut3
G 23	4	15	71,88	12,5	17,4	23,3	58,2	18,5	Lu
G 23	4	35	86,05	10,81	12,6	23,7	57,6	18,7	Lu
G 23	1	15	48,41	5,15	10,6	16,9	67,0	16,2	Ut3
G 23	1	35	73,68	4,53	6,1	18,1	65,6	16,4	Ut4
G 36	4	15	47,99	3,53	7,4	16,9	65,0	18,1	Ut3
G 36	4	35	67,44	2,11	3,1	15,6	66,7	17,7	Ut3
G 36	1	15	53,39	5,83	10,9	20,9	64,3	14,8	Lu
G 36	1	35	72,56	10,83	14,9	22,5	63,3	14,2	Lu
G 47	4	15	71,88	12,05	16,8	17,26	69,10	13,64	Ut4
G 47	4	35	86,05	10,81	12,6	16,06	70,55	13,40	Ut3
G 47	1	15	64,38	2,81	4,4	20,46	65,27	14,26	Ut4
G 47	1	35	93,02	10,87	11,7	20,87	65,03	14,10	Ut4

Tabelle 22: Ergebnisübersicht der Kornanalyse

4.3.5 Orientierende Messungen

In weiteren, orientierenden Untersuchungen wurden Daten zum Eindringwiderstand mittels einer Handschlagsonde und Messungen zum volumetrischen Wassergehalt mittels einer TDR-Sonde erhoben.

4.3.5.1 Messung des Eindringwiderstand

Am 06.06.2013 wurde der Eindringwiderstand des Bodens mittels einer Kleinschlagsonde erfasst. Die Masse des Fallgewichts betrug 1 kg.

Die Messungen erfolgten in den Gassen G28 – G23 und G31 – G35 in allen vier Segmenten der Fahrund Mittelspur bis in eine Tiefe von 50 cm uGOK in jeweils 5 cm Stufen. Die Messungen wurden bei trockener Witterung durchgeführt.

Die Abbildung 30 gibt die Mittelwerte der Anzahl an Schlägen innerhalb der Gassen G28 – G23 und G31 – G35 wieder. Auffällig ist der erhöhte Eindringwiderstand im Tiefenbereich 15 bis 25 cm uGOK sowohl in der Fahrspur wie auch in der Mittelspur. Insgesamt liegt die gemittelte Anzahl der Schläge, um die Sonde 50 cm tief in den Boden zu treiben, bei 6 Schlägen in der Fahrspur (Stabw. 3 Schläge) und bei 5,1 Schlägen in der Mittelspur (Stabw. 3 Schläge). Damit besteht kein signifikanter Unterschied des Eindringwiderstands zwischen den beiden Bereichen der Rückegasse.

Abbildung 30: Übersicht zum Eindringwiderstand mit Tiefenbezug

Dargestellt ist die gemittelte Anzahl der Schläge einer Kleinschlagsonde innerhalb der Gassen G28 – G23 und G31 – G35 bis zu einer Tiefe von 50 cm uGOK. Schlaggewicht der Sonde = 1 Kg.

4.3.5.2 Messung des volumetrischen Wassergehalts mittels TDR-Sonde

Am 05.06.2013 wurde in allen Gassen und Bereichen der volumetrische Wassergehalt mittels einer TDR-Sonde des Typs ML2x (Delta-T Devices 1999) ermittelt. Anhand der Zufallszahlen (s. Anlage II) wurde pro Segment ein Gassenmeter lokalisiert, in dem jeweils drei Messungen, in einem Abstand von ca. 5 cm, durchgeführt wurden. Gemessen wurde in einem Tiefenbereich von ca. 7 cm. Alle Messungen lagen eng beieinander, so dass sich für die Bereiche Bestand, Mittelspur und Fahrspur durch-schnittliche Wassergehalte zwischen 40 vol. % und 42 vol. % ergaben (Stabw 5 vol. %). Insgesamt wurden 324 Messungen durchgeführt.

4.3.6 Laboranalysen

Das Bodenmaterial der Bohrstockbeprobung (4.3.4.1) wurde auf die Parameter pH-Wert, organischer Kohlenstoff und gravimetrischer Wassergehalt untersucht. Weitere pH-Wert-Analysen wurden an den Bodenproben der Perforationslochuntersuchung (s. Kapitel 4.3.2.5) durchgeführt.

4.3.6.1 pH-Wert

Alle im Labor untersuchten Bodenproben wurden in einer 0,01 molaren CaCl₂-Lösung nach der DIN ISO 10390 (2005) untersucht.

4.3.6.2 Organischer Kohlenstoff (Corg)

Die Bestimmung des Gesamtkohlenstoffs (C_{ges}) erfolgte mit dem Carbon Sulfur Determinator ELTRA CS-500 nach DIN EN ISO 15936 (2012) mittels trockener Verbrennung. Der anorganische Kohlenstoffgehalt (Can) wurde mit der Scheibler-Apparatur nach DIN ISO 10693 (1997) ausschließlich in den gekalkten Gassen bestimmt (G25, G23, G31, G32, G36, G45, G46 und G47). Aus der Berechnung C_{ges} minus Can ergibt sich der organische Kohlenstoffgehalt (C_{org}).

4.3.6.3 Wassergehalt gravimetrisch

Für die Wassergehaltsbestimmung nach DIN 18121 wurden die Proben als Einzelbestimmung mit ungefähr 20 g feuchtem Boden eingewogen und im Trockenschrank bei 105° C bis zur Gewichtskonstanz getrocknet. Der Wassergehalt ergibt sich aus der Differenz von feuchtem und getrocknetem Boden.

4.3.7 Wetterdaten

Für die Jahre 2013 bis 2015 wurden Daten der Intensiv-Waldmonitoringfläche "Solling" der Nordwestdeutschen Forstlichen Versuchsanstalt (NWFVA) ausgewertet. Die Fläche liegt auf 500m üNN und 8 km nordwestlich zur Versuchsfläche. Die Gauß-Krüger-Koordinaten der Freifläche liegen bei R 3539956 und H 5736948. Vorhandene Lücken der Wetterdaten wurden über benachbarte Stationen des Deutschen Wetterdienstes mittels multipler linearer Regression geschlossen.

Die potentielle Evatranspirationsrate auf der Versuchsfläche wurden mit den Parametern Lufttemperatur, Globalstrahlung und Windgeschwindigkeit nach Turk und Wendling (in Kappas 2009) kalkuliert (s. Formel 1). Eine gleitende 7-Tage Wasserbilanz wurde nach Formel 2 berechnet:

Formel 1:ET = 0,0031 * (RG + 209) * (Tm/(Tm+15)).
Luftfeuchte musste nicht berücksichtigt werden, da rF immer > 50%.Formel 2: $B_j = \sum_{j=7}^{j} P - \sum_{j=7}^{j} E$
mit j = Anzahl der Tage von 2013-01-07 bis 2015-12-31, P = Tagesniederschlag (mm), E = Tagesevapotranspiration (mm).

Abbildung 31: Gleitende 7-Tage-Wasserbilanz im Solling in den Jahren 2013 bis 2015

Berechnet nach Daten der Intensiv-Monitoringfläche der NWFVA im Solling. Rote Linien kennzeichnen die ausgewerteten Messzeiten für die Boden-Wasserspannung in 6 cm Tiefe in der RÜWOLA-Versuchsfläche. Die Zahlen über den roten Linien geben die Gesamt-Wasserbilanz über den betrachteten Messzeitraum an. Die gestrichelten Kästen beinhalten den Expositionszeitraum der Eisenstäbe. Die schwarze, durchgezogene Linie stellt die gleitende 30-Tage-Wasserbilanz dar.

5 Ergebnisse

Im Folgenden werden die Ergebnisse der in Tabelle 5 bis Tabelle 8 aufgeführten Erhebungen vorgestellt. Die Ergebnisse der orientierenden Untersuchung (Tabelle 8) werden bereits im Kapitel "Material und Methoden" wiedergegeben. Die Ergebnisse der gestörten Bodenproben (Tabelle 7) fließen in die Beschreibung des Untersuchungsgebiets (Kapitel 3.5.5) mit ein.

5.1 Ergebnisse der visuellen Erhebungen

5.1.1 Bodenansprache (13.08.2015)

Zwei Jahre nach dem Anlegen der Gassen und der Durchführung der Regenerationsmaßnahmen wurde innerhalb der Fahrspur in Gasse 25 (gekalkte Lochstanzvariante S20K) eine Bodenansprache durchgeführt. Die Ansprache ergab das Vorliegen einer Braunerde aus glaziärem Lösslehm über mittlerem Buntsandstein. Die ausgewiesenen Horizonte sind der Abbildung 33 zu entnehmen. Der Aufnahmebogen der Bodenansprache ist Anlage III zu entnehmen. Eine Auswahl der angesprochenen Bodenparameter ist in Tabelle 23 wiedergegeben.

Profilbeschreibung

Als Humusform liegt der Fahrspur ein F-Mull auf. Der L-Horizont besitzt eine Mächtigkeit von 3-6 cm und der Of-Horizont ist ca. 1 cm mächtig (s. Abbildung 32). In Bodennähe zeigt die Blattförna die für das Of-Material typische Stapelung und Verpappung mit einhergehender Graufärbung.

Abbildung 32: Auflagehorizont in der Fahrspur (2015): Mit a) Vorwiegend verbrauntes L-Material mit Löchern und Einkerbungen; b) Obergrenze des Ah-Horizonts ohne Oh-Material; c) F-Mull mit dem Humusprofil L/Of/Ah/ Im Bodenprofil wurden die drei diagnostischen Horizonte Ah, Bv, und Cv mit ihren Übergangshorizonten ausgewiesen (s. Tabelle 23). Als Bodenart kam durchgängig ein schluffiger Lehm vor, dessen hohe Lagerungsdichte (Nachweis durch Messer- Einstichprobe) auch seinem trockenen Feuchtezustand zum Aufnahmezeitpunkt geschuldet ist. Eine Tonverlagerung, wie sie zur Ausweisung einer Parabraunerde gegeben sein müsste, konnte nicht nachgewiesen werden.

Das durch die Kalkung zugeführte Carbonat ließ sich bis 6 cm uGOK nachweisen (Nachweis mit 10 %iger Salzsäure). Die in situ Messungen des pH-Werts im Nahbereich eines Perforationsloches ergaben jedoch erhöhte pH-Werte bis hin zum Cv-Horizont. Die tiefste Messung erfolgte in einer Tiefe von 26 cm uGOK, ca. 2 cm neben dem Perforationsloch und lag hier bei einem pH-Wert von 7,6.

Bis in die Tiefe des per Salzsäure nachgewiesenen Carbonats (6 cm uGOK) lag auch ein Gemenge der Gefügeformen von Krümeln, Bröckeln und Kohärentgefüge vor. Unterhalb der 6 cm befand sich ausschließlich, das für Lössböden typische Kohärentgefüge.

Bis in eine Tiefe von ca. 30 cm uGOK wurde eine intensive Durchwurzelung, gefolgt von einer sehr schwachen Durchwurzelung bis in 55 cm uGOK angetroffen. Unterhalb der 55 cm befanden sich weder Fein- noch Grobwurzeln.

Nr	Hori- zont	Unter- grenze	Bodenart	Skelet- tanteil	Carbonat- gehalt	Bodenfeuch- tezustand	Trocken- rohdichte	Gefügeform	Humus
		cm uGOK		[%]	[%]		g/cm ³		[%]
1	Ah	3	Lu	1	c3, 2-<10	ko1, fest	1,4	bro + kru + koh	2-5
2	Bv-Ah	6	Lu	2	c1, <0,5	"	1,5	bro + kru + koh	2-5
3	Βv	28	Lu	5	c0	u	1,6	koh	<1
4	Cv-Bv	50	Lu	10	c0	u	1,6	u	"
5	Bv-Cv	66	Lu	30	c1, <0,5	u	1,8	u	"
6	Cv	66+	Lu	70	c1, <0,5	u	1,8	u	"

Tabelle 23: Ausgewählte Parameter der Bodenansprache (Fahrspur)

Abbildung 33: Profil der Bodenansprache, August 2015

Die gestrichelte weiße Linie beschreibt den Grenzverlauf einer Vergrauung unterhalb der Fahrspur, die mit der Munsell-Farbskala nicht erfasst werden konnte.

5.1.2 Erfassung der Fahrspurbildung (05.06.2015)

Die Befahrung der Gassen hat sich auf die Ausprägung des Spurbilds unterschiedlich intensiv ausgewirkt. Es gibt sowohl Gassen ohne Eintiefung und Wulstbildung sowie Gassen mit einer maximalen Eintiefung von 35 cm uGOK. Die Tabelle 24 gibt eine Zusammenfassung aus den durch Befahrung entstandenen Parametern Spurtiefe und Wulstausbildung (s. Anlage XI und XII) wieder. Der Anlage sind die einzelnen Parameter innerhalb der vier Segmente jeder Gasse zu entnehmen. Dabei liegt Segment 1 am Unterhang und stellt den Beginn der Befahrung mit den häufigsten Überfahrten dar.

Die im Merkblatt "Bodenschutz bei der Holzernte in den Niedersächsischen Landesforsten" definierte tolerierbare Spurtiefe von maximal 20 cm auf 90 % der Rückegassenlänge bei Böden der Gefährdungsstufen II-IV wird in den 19 Versuchsgassen vier Mal überschritten. Drei Mal liegen Überschreitungen der tolerierbaren Spurtiefe auf ca. 75 % der Rückegassenlänge vor. Weitere vier Mal liegen Fahrspurtiefen nahe der maximalen Spurtiefe und/ oder ausgeprägte Bodenwülste vor (s. Tabelle 24). Abbildung 34 zeigt die Fahrspureinstufungen in kartographischer Darstellung.

Reihe	Gas- se	Maß- nahme	Stub- ben	Ø Spurtiefe/ Stabw. [cm]	Spurtiefe Klasse 1 - 5	Wulstfläche Klasse 1 – 5/ A/ Stabw.	Spurausprägungsstufe (Summe der Klassen)	WSL- Spurtyp
1	28	S50.a	m	11,0/ 3,1	3	4/ 156/83	7	11 - 111
2	27	S20.a	о	13,0/ 3,0	3	3/96/79	6	-
3	26	Ref.a	m	18,8/ 1,8	4	3/ 95/80	7	ш
4	25	S20K.a	о	17,8/ 3,7	4	5/434/215	9	Ш
5	24	S50Kd.a	m	18,0/ 3,7	4	5/320/53	9	Ш
6	23	S50K.a	о	27,0/ 4,8	5	5/467/128	10	Ш
7	31	K.a	m	9,3/ 9,6	3	2/45/ 78	4	I - III
8	32	S50KP.a	m	9,0/ 0,0	2	1/0/0	3	Ш
9	33	S20.b	0	27,3/ 5,4	5	4/294/62	9	Ш
10	34	Ref.b	m	10,0/ 0,0	2	1/ 0/0	4	Ш
11	35	S50P.a	m	14,0/ 3,5	4	1/0/0	4	-
12	36	S20K.b	о	14,0/ 3,3	3	2/60/60	5	-
13	37	\$50.b	m	21,3/ 4,9	4	4/202/23	9	Ш
14	38	S50P.b	m	21,0/ 0,0	5	3/90/0	8	Ш
15	45	K.b	о	8,0/ 0,0	2	1/0/0	3	Ш
16	46	S50KP.b	m	30,0/ 0,0	5	3/80/0	8	Ш
17	47	S50K.b	m	19,0/ 2,4	4	4/246/89	8	Ш
18	48	Ref.c	ο	21,5/ 1,5	5	4/ 205/53	9	Ш
19	49	S50Kd.b	m	21,5/ 3,6	5	4/228/39	9	

Tabelle 24: Ausprägung der Fahrspurbildung innerhalb der Versuchsgassen

Klassenbildung der gemittelten Spurtiefe (cm uGOK): 1 = < 5; 2 = 5 - < 10; 3 = 10 - < 15; 4 = 15 - <20; 5 = >20

Klassenbildung der gemittelten Wulstausprägung (cm^2): 1 = 0 in allen Segmenten; 2 = 0 - < 80; 3 = 80 - < 150; 4 = 150 - <300; 5 = >300. Mit m = mit Stubben; o = ohne Stubben.

Rot = Spurtiefe von 20 cm auf 90 % der Rückegasse überschritten.

Orange = Spurtiefe von 20 cm auf 75 % der Rückegasse überschritten.

Gelb = gemittelte Fahrspurtiefen nahe 20 cm und/oder ausgeprägte Bodenwülste liegen vor.

A = Querschnittsfläche des Wulstes in cm²

Abbildung 34: Spurtypen der Versuchsgassen nach der eidgenössischen Forschungsanstalt Forst, Schnee und Landschaft (Lüscher 2010).

Der Spurtyp I richtet sich nach der Mächtigkeit des Ah-Horizonts. Dieser beträgt im Bestand ca. 5 cm. Spurtiefen > 5 cm reichen somit in den B-Horizont hinein und entsprechen dann bereits dem Spurtyp II.

5.1.3 Öffnung des Blattdaches (2014, 2016)

Die Öffnung des Blattdachs (Kronenschluss) direkt über den Gassen wurde mittels Hemisphärenfotos im Jahr 2014 und 2016 ermittelt. Die Fotos wurden jeweils in der Mitte eines Gassensegments mit Hilfe einer Fisheyelinse aufgenommen (s. Material und Methoden S. 29).

Im Bestand liegt die Öffnung des Blattdaches im Jahr 2016 bei 7,5 % (STABW 1%). Gemessen wurde auf der Höhe der vier Segmente der Referenzgassen G26 und G48, jeweils in der Mitte zur benachbarten Gasse.

Die Referenzgassen R1 und R3 liegen mit 19 % und 17 % Blattdachöffnung an der Untergrenze der im Jahr 2014 gemessenen Werte, während es sich bei R2 um eine der hellsten Gassen handelt (24% Blattdachöffnung) (s. Tabelle 25). Dieses Muster wird auch im Jahr 2016 beobachtet. Die Referenzgassen R1 und R3 liegen hier bei 9% und 8% Blattdachöffnung, während R2 eine Öffnung von 13% aufweist.

Die Lichtverhältnisse innerhalb der Gassen liegen im Jahr 2014 zwischen 13% und 36% Blattdachöffnung (Tabelle 25, Abbildung 36 und Abbildung 35) und sind damit nach Van Couwenberghe et al. (2011) als eher gering einzustufen. Die Mittlere Blattdachöffnung liegt bei 21% (STABW 3%). In den meisten Gassen kommen sowohl helle als auch dunkle Bereiche vor. Weder zwischen den Segmenten 1 bis 4 noch zwischen den Versuchsgassen sind signifikante Unterschiede der Lichtverhältnisse nachzuweisen (Anova: Einfaktorielle Varianzanalyse, Signifikanzniveau 0,05). Die in den alten Schneisen verlaufenden Rückegassen (Kennzeichnung: o) unterschieden sich in der Belichtungssituation dabei nicht systematisch von den neu angelegten Rückegassen.

Im Jahr 2016 ist die Öffnung des Blattdachs durch die Ausweitung des Kronenwuchses bereits stark reduziert. Die Mittlere Blattdachöffnung liegt nun nur noch bei 11% (STABW 3%). Weder zwischen den Segmenten 1 bis 4 noch zwischen den Versuchsgassen sind signifikante Unterschiede der Lichtverhältnisse nachzuweisen (Anova: Einfaktorielle Varianzanalyse, Signifikanzniveau 0,05).

Die Prozentwerte des sichtbaren Himmels werden bei Mihók et al. (2007) in die Klassen bestandsähnlich (< 18%) und offen (>20%) eingeteilt. Kelemen et al. (2012) setzen die Grenze zwischen bestandsähnlich und offen bei 20% canopy openness. In Tabelle 25 ist die Überschreitung des Grenzwerts für die Regeneration der Vegetation in Bestandeslücken von Buchenwälder in Ungarn von 18 % (nach Mihók et al. 2007) farblich dargestellt. Abbildung 35 gibt die Häufigkeitsverteilung der Hemisphärenfoto-Messwerte zur Öffnung des Kronendachs wieder und Abbildung 36 fasst die an den vier Sektoren der Gassen gemessenen Lichtverhältnisse (2014) als Boxplot zusammen (Median und Quartile). Alle Gassen liegen hier im Mittel nahe dem Grenzbereich zum Regenerationsvermögen der Vegetation.

Im Jahr 2016 weisen nur noch zwei Segmente Lichtverhältnisse oberhalb der Regenerationsgrenze von 18 % auf. Hierbei handelt es sich jeweils um das erste Segment (Waldrand) der Gassen G 24 und G 33 (ohne Abbildung).

Tabelle 25: Canopy Openness (% sichtbarer Himmel) an jeweils einem Messpunkt in den vier Sektoren der Rückegassen am 26.07.2014

Legende Blattdachöffnung: 🗾 >:							>18	%											
Gasse	G28	G27	G26	G25	G24	G23	G31	G32	G33	G34	G35	G36	G37	G38	G45	G46	G47	G48	G49
Variante	S50	S20	R1	S20K	S50Kd	S50k	к	S50KP	S20	R2	S50P	S20K	S50	S50P	к	S50KP	S50K	R3	S50KD
Segment/ Stubben		0		0		0			0			0			0			0	
4	25	17	18	24	20	22	16	23	17	25	19	23	19	17	30	22	20	13	25
3	19	14	19	18	17	23	21	18	16	22	24	23	19	20	27	18	20	18	26
2	14	19	20	16	20	17	20	20	20	25	29	26	18	23	22	20	17	17	23
1	17	33	19	17	26	23	17	24	36	26	26	19	14	27	19	23	17	20	19
Mittel	19	21	19	19	21	21	19	21	22	24	24	23	18	22	24	21	18	17	23

o = alte Schneisen, ohne Stubben.

18% = Grenzwert für die Regeneration der Vegetation in Bestandslücken von Buchenwälder in Ungarn (nach Mihók et al. 2007)

Histogram of Hemisphere\$X..Cnpy.Open

Abbildung 35 Häufigkeitsverteilung der Hemisphärenfoto-Messwerte zur Öffnung des Kronendachs 2014.

Abbildung 36 Boxplot der Kronendach-Öffnung in den Rückegassen der Versuchsfläche

Gestrichelte Linie = Grenzwert für die Regeneration der Vegetation in Bestandeslücken von Buchenwälder in Ungarn von 18% (nach Mihók et al. 2007)

5.1.4 Erfassung der krautigen Biomasse (2013 - 2016)

Die Biomasse der gesamten krautigen, oberirdischen Vegetation wurde in den Jahren 2013 bis 2016 als Biomasseindex (BMI_{ges}) aufgenommen (s. Kapitel 4.3.2.3) und wird im Folgenden getrennt nach den Bereichen Bestand, Fahrspur und Mittelgasse betrachtet. Die Referenzgassen werden ebenfalls gesondert betrachtet, um sie mit den Versuchsgassen in Beziehung setzen zu können.

Innerhalb aller Versuchsgassen verhalten sich die Segmente 1 bis 4 in Bezug auf ihre Biomassedichten, ähnlich und weisen keine signifikanten Unterschiede auf (Signifikanzniveau bei 0,05). Dies bedeutet, dass weder im Bereich der Fahrspuren noch im Bereich der Mittelspuren Wuchsunterschiede zwischen Unter- und Oberhang bestehen.

5.1.4.1 Krautige Biomasse im Bestand

Da der Untergrund durch den Buchenbestand sehr stark beschattet wird (s. Kapitel 5.1.3), ist hier in allen Betrachtungsjahren nur sehr vereinzelt ein Unterbewuchs vorzufinden.

5.1.4.2 Biomasse in den Referenzgassen

Der Biomassebewuchs ist in den Referenzgassen unterschiedlich stark ausgeprägt. Der Abbildung 39 ist neben dem Biomasseaufwuchs auch der Befahrungszustand der Gassen zu entnehmen. Die Referenzgasse R2 weist über die gesamte Gassenbreite die meiste Biomasseproduktion auf. Zu bemerken ist, dass R2 sowohl einen relativ hohen Lichteinfall (24 % Blattdachöffnung, 2014), wie auch eine geringe Fahrspurausprägung (Stufe 4, s. Tabelle 24) aufweist. Während der Bewuchs in der Fahrspur im ersten Jahr sprunghaft ansteigt, entwickelt er sich in der Mittelspur kontinuierlich und steigert sich von Jahr zu Jahr.

5.1.4.3 Biomasse in den Gassen der Maßnahmenvarianten

Die Wuchsintensität im Bereich der Fahrspuren unterscheidet sich nur im ersten Jahr nach der Befahrung (2014) signifikant (Signifikanzniveau < 0,05) von dem Bewuchs in der Mittelspur (Abbildung 37). Wie bereits bei den Referenzgassen beschrieben, steigt auch in den Maßnahmenvarianten im ersten Jahr nach der Befahrung die Biomasse in der Fahrspur sprunghaft an, während die Biomasse in der Mittelspur gleichmäßig zunimmt. Das Mengenverhältnis der Biomasse zwischen der Fahrspur und der Mittelspur beträgt ca. 1,7 : 1 (2013), 1,9 : 1 (2014), 1,2 : 1 (2015) und 0,7 : 1. Die vier Segmente innerhalb der Gasse wei-

Abbildung 37: Zeitliche Entwicklung der Biomasse.

sen untereinander keine signifikanten Unterschiede auf (Anova: einfaktorielle Varianzanalyse).

Bis zum Jahr 2015 weisen alle gekalkten oder mit einer Aussaat behandelten Gassen über die gesamte Gassenbreite, höhere Biomassewerte als die Referenzgassen R1 und R3 auf (s. Abbildung 38; R2 wird auf Grund ihres erhöhten Lichtgenusses nicht mit in die Betrachtung einbezogen).

Differenziert nach den Bereichen Fahrspur und Mittelspur liegt bis 2015 die durchschnittliche Steigerung des BMI in der Fahrspur bei ca. 40 % und in der Mittelspur bei ca. 80 % gegenüber dem Referenzbereich (Tabelle 26). Der Abbildung 39 sind die Biomasseindizes aller Versuchsgassen zu entnehmen.

Im Jahr 2016 wächst seit Versuchsbeginn das erste Mal mehr Biomasse in der Mittelgasse als in der Fahrspur auf (s. Abbildung 37). Auch das Verhältnis des BMI der einzelnen Gassen zu den Referenzgassen hat sich verändert. Im Jahr 2016 fallen auch die gekalkten Varianten S20 K und S50 Kd hinter den BMI der Referenzgassen zurück. In den Varianten S50, S50 K und K wächst ähnlich viel Biomasse wie in den Referenzgassen R1 und R2 auf. Die Variante S50 KP hat im Verhältnis zu den Referenzgassen einen fast doppelt so hohen BMI und weist damit den stärksten Biomasseaufwuchs der Versuchsvarianten auf. Der Grund hierfür liegt in einem als sehr hoch eingestuften BMI von 34.000 der Gasse 32.

Auffällig ist der Einbruch des BMI in der Referenzgasse R2, der durch den mittlerweile reduzierten Lichteinfall erklärt werden kann (s. Kapitel 5.1.3).

BMI	Summe	Mittel	STABW	% zur Referenz	Summe Referenz	Mittel Referenz	STABW Referenz
Fahrspur	170.773	3.558	2.461	138%	23.241	2.582	2.798
Mittelspur	112.765	2.349	2.149	179%	11.842	1.316	2.102

Tabelle 26: Vergleich der Biomasse zwischen den Versuchsgassen und den Referenzgassen (2013 – 2015)

Abbildung 38: Kumulierte Biomasse 2013 – 2015 und 2016

Summe der Biomasse aus den zwei Gassen pro Maßnahmenvariante; geordnet nach ihrer Biomasseproduktivität; unterteilt nach Fahrspur + Mittelspur und separater Betrachtung der Gassenbereiche.

Abbildung 39: Zeitliche Entwicklung der Biomasse in den Versuchsgassen (2013 – 2016).

Dargestellt ist die gemittelte krautige Biomasse der Gassensegmente pro Gasse für die Bereiche Fahrspur und Mittelgasse.

5.1.5 Erfassung der Zeigerpflanzen (2013 - 2016)

Zusammen mit dem Aufwuchs an krautiger Biomasse, wurde der Biomasseindex an Zeigerpflanzen erfasst (BMI_z), welcher auf eine befahrungsbedingte Strukturstörung hinweisen kann. Die Biomasse der krautigen, oberirdischen Befahrungszeiger wurde in den Jahren 2014 bis 2016 als Biomasseindex (BMI_B) aufgenommen (s. Kapitel 4.3.2.4).

5.1.5.1 Zeigerpflanzen im Bestand

Da sich im Bestand auf Grund des geringen Lichteinfalls keine krautige Vegetation mehr entwickelt, kommen hier auch keine Zeigerpflanzen für befahrungsbedingte Strukturstörung vor.

5.1.5.2 Zeigerpflanzen in den Referenzgassen

Der Bewuchs an Befahrungszeigern ist in den Referenzgassen R1 und R3, also ab der Spurausprägungsstufe 5, ähnlich (s. Abbildung 42). Dennoch weist R2, welche die geringsten Spurausprägungen aufweist, den höchsten Anteil an Zeigerpflanzen auf. Dies kann durch den höheren Lichtgenuss und die damit einhergehende bessere Etablierung der Zeigerpflanzen erklärt werden, bleibt aber letztlich spekulativ. Der Abbildung 42 ist neben dem Aufwuchs an Zeigerpflanzen auch der Befahrungszustand der Gassen zu entnehmen. Die Aufwuchsdaten der Referenzgassen gehören zu einer Grundgesamtheit (Anova: einfaktorielle Varianzanalyse) und können daher als Einheit angesprochen werden.

5.1.5.3 Zeigerpflanzen in den Gassen der Maßnahmenvarianten

Die Wuchsintensität der Zeigerpflanzen im Bereich der Fahrspuren unterscheidet sich in den Jahren 2014 bis 2016 signifikant von der Wuchsintensität der Mittelspur (Signifikanzniveau < 0,05; Abbildung 40). Besonders im zweiten Jahr nach der Befahrung nimmt der Anteil an Zeigerpflanzen in der Fahrspur stark zu, während die Menge an Zeigerpflanzen in der Mittelspur nur geringfügig zunimmt. Das Mengenverhältnis der Zeigerpflanzen zwischen der Fahrspur und der Mittelspur beträgt ca. 11 : 1 (2014) und 6 : 1 (2015) und ca. 300 : 1 (2016) und ist damit wesentlich ausgeprägter als die Unterschiede des BMI_{ges} zwischen diesen Bereichen (s. Kapitel 5.1.4.3).

Abbildung 40: Zeitliche Entwicklung der Zeigerpflanzen.

Die Betrachtung der einzelnen Gassen ergibt ein heterogenes Bild (s. Abbildung 42):

- Die Maßnahmen S50, S50KP und S50P liegen mit beiden Wiederholungsgassen unterhalb des mittleren BMI_z der Referenzen.
- Die Maßnahmen S50Kd, S50K und K liegen mit beiden Wiederholungsgassen oberhalb des mittleren BMI_z der Referenzen.
- Die Maßnahmen S20 und S20K liegen sowohl unterhalb wie auch oberhalb des mittleren BMI_z der Referenzen.

Erst die Betrachtung des prozentualen Anteils der Zeigerpflanzen an der gesamten Biomasse der jeweiligen Gassen macht deutlich, dass in den meisten Maßnahmenvarianten weniger Zeigerpflanzen als Zeichen für befahrungsbedingte Strukturstörungen gewachsen sind, als in den Referenzgassen R1 und R3 (Abbildung 41).

Abbildung 41: Zeigerpflanzen 2014 – 2016

Dargestellt ist das Verhältnis der Zeigerpflanzen in Prozent zum gesamten Biomasseindex aus den zwei Wiederholungsgassen einer Maßnahmenvariante.

Legende: Spurausprägungsstufe 1 – 4 gering 5 – 7 mittel 8 – 10 stark

Abbildung 42: Zeitliche Entwicklung der Zeigerpflanzen in den Versuchsgassen

Dargestellt ist die summierte Biomasse der Gassensegmente pro Gasse für die Bereiche Fahrspur und Mittelgasse.

5.1.6 Durchwurzelungsintensität im Bereich der Perforationslöcher (13.08.2015)

In den Gassen G33 (S20), G25 (S20K), G46 (S50KP) und G49 (S50Kd) wurden im August 2015 ca. 40 cm tiefe und ca. 70 cm. breite Profile quer zur linken Fahrspur der Versuchsgasse gegraben, um die Durchwurzelungsintensität im Bereich der freigelegten Perforationslöcher zu erkunden (s. 4.3.2.6). Eine Übersicht zum Ergebnis der Wurzelauszählung ist in Tabelle 27 dargestellt.

5.1.6.1 Durchwurzelung in den Maßnahmenvarianten

Der Vergleich der Maßnahmen mit Perforationslöchern ergibt, dass innerhalb der vier betrachteten Gassen, die Varianten mit einer erhöhten Anzahl von Perforationslöchern (S20) und natürlicher Vegetation, im Vergleich zu der Variante mit weitem Lochabstand (S50) und einer Aussaat bzw. Branntkalk, die höchsten Durchwurzelungsintensitäten aufweisen (s. Tabelle 27).

Hervorzuheben ist, dass sich die intensivere Durchwurzelung der S20 Varianten bis in eine Tiefe von ca. 20 cm uGOK auswirkt.

Die geringste Durchwurzelung liegt in der Branntkalkvariante vor, welches auf den starken Verfestigungsgrad und die hohe Basizität der Branntkalksäulen zurückzuführen ist.

Die flächig gekalkte S50 Variante, die mit einer Aussaat kombiniert wurde, weist nur innerhalb der oberen 4 cm ein erhöhtes Wurzelwachstum auf, wodurch die natürliche Vegetation weitestgehend verdrängt worden ist. Bereits ab einer Tiefe von 8 cm uGOK ist die Wurzelintensität niedriger als in den S20-Varianten.

Hiernach wirkt sich die natürliche Vegetation in Verbindung mit einer Lochstanzvariante positiver auf die Durchwurzelung des Unterbodens aus, als die Kalkungs- und Aussaatvariante. Aufgrund des geringen Stichprobenumfangs von jeweils 5 Perforationslöchern pro Gasse, sollte das Ergebnis jedoch an der Auswertung von weiteren Perforationslöchern überprüft werden (s. Masterarbeit J. Sparrer 2017).

cm uGOK	S20 K	S 20	S50 KP	S50 Kd
4	3,4	4,6	5,8	5,0
8	3,5	3,9	3,3	3,3
12	3,9	4,0	2,3	2,0
16	2,7	4,2	1,7	1,2
20	2,3	2,9	1,4	1,1
24	2,2	2,2	1,3	1,2
Summe	18	22	16	14

Tabelle 27: Übersicht zum Ergebnis der Wurzelauszählung (2015)

Dargestellt ist der Mittelwert aller Fein- und Grobwurzeln in dem Tiefenbereich 0 bis 24 cm unter der Geländeoberkante über alle erfassten Profilwände pro untersuchter Gasse. n = 20 Perforationslöcher (4 Gassen x 5 Perforationslöcher).

5.1.6.2 Durchwurzelung im Bereich der Perforationslöcher

Die Dokumentation der Feinwurzeln im Bereich der Perforationslöcher erfolgte durch die Auszählung an offenen Profilwänden (s. Kapitel 4.3.2.6). Als Referenz zur Durchwurzelungsintensität im Nahbereich der Perforationslöcher wurden in der jeweils selben Profilwand, Referenzflächen ausgewiesen, die mindestens zwei Rasterflächen Abstand zum Perforationsloch besaßen (s. Abbildung 43). Zu dem Nahbereich eines Perforationsloches zählt hingegen ein Rasterkranz aus einer Gitterstärke um das Perforationsloch herum.

Abbildung 43: Auswertungsbereiche zum Vergleich der Durchwurzelungsintensität Mit: rosa Fläche = Nahbereich des Perforationslochs; blaue Fläche = Referenzfläche zum Nahbereich des Perforationslochs

Die Auswertung aller Perforationslöcher zeigt ein erhöhtes Aufkommen an Feinwurzeln (Perforationsloch und angrenzender Bereich) gegenüber der Referenzfläche. Beginnend mit dem höchsten Anstieg der Wurzeldichte ergibt sich die Reihenfolge S50 KP > S20 > S20 K > S50 Kd. Einzig die gesteigerte Wurzelintensität der S50KP Variante (Stanzen + flächige Kalkung + Aussaat) erweist sich hierbei als signifikant erhöht zum Referenzbereich. Nach Tabelle 27 und Abbildung 44 ergibt sich die Signifikanz vorrangig aus der gesteigerten Wurzelintensität im Oberboden.

Abbildung 44: Anzahl der Feinwurzeln mit Tiefenbezug

Tabelle 28: Zusammenfassung der Wurzelintensität im Bereich der Perforationslöcher

Gasse	Perforationslochbereich [Anzahl Feinwurzeln]	Referenzbereich [Anzahl Feinwurzeln]	Veränderung zur Referenz [%]
25 (S20 K)	267	136	96
33 (S20)	246	87	182
46 (S50 KP)	301	96	213*
49(S50 Kd)	107	92	16

Dargestellt ist die Summe an Feinwurzeln im Bereich der Perforationslöcher im Vergleich zum Referenzbereich (s. Abbildung 43) pro Gasse. Mit * = signifikant (t-Test, 5 %-Niveau).

5.1.7 Diskussion zu den Daten der visuellen Erhebung

Um Zusammenhänge zwischen der Versuchsfläche, dem Pflanzenaufwuchs und den Spurparametern aufzudecken, wurden Korrelationsberechnungen durchgeführt (s. Tabelle 29)

	Spurausprägung	BMI 2015	BMIz 2015	Blattdachöffnung	Stubben	Hangneigung
Spurausprägung	-	-0,3	-0,1	-0,2	-0,3	-0,3
BMIges 2015	-0,3	-	0,7	0,5	0,1	0,3
BMIz 2015	-0,1	0,7	-	0,2	0,1	0,3
Blattdachöffnung	-0,2	0,5	0,2	-	0,0	0,2
Stubben	-0,3	0,1	0,1	0,0	-	0,0
Hangneigung	-0.3	0.3	0.3	0.2	0.0	_

Tabelle 29: Korrelation der Han	g- und Gassenparameter	zur Biomasse 2015	und 2016
Tabelle ESt Roll clation del Han		Lai Diolliasse Lors	

	Spurausprägung	BMI 2016	BMIz 2016	Blattdachöffnung	Stubben	Hangneigung
Spurausprägung	-	-0,3	-0,1	-0,2	-0,3	-0,3
BMIges 2016	-0,3	-	0,4	0,4	-0,1	0,4
BMIz 2016	-0,1	0,4	-	0,3	0,1	0,3
Blattdachöffnung	-0,2	0,4	0,3	-	0,0	0,2
Stubben	-0,3	-0,1	0,1	0,0	-	0,0
Hangneigung	-0,3	0,4	0,3	0,2	0,0	-

Die Farbintensität der Zellen spiegelt die Stärke des positiven oder negativen Zusammenhangs wider, mit 0 – 0,2 sehr schwache, > 0,2 - 0,4 schwache, > 0,4 - 0,6 mittlere und > 0,6 - 8 starke (bzw. stark negative) Korrelation. Mit BMI_{ges} = gesamte, krautige, oberirdische Biomasse; BMI_z = gesamte, krautige, oberirdische Biomasse der Zeigerpflanzen für befahrungsbedingte Störungen. Die Korrelation wurde für jedes Gassensegment durchgeführt (n = 4 x 19).

Hiernach liegt im Jahr 2015 zunächst ein starker Zusammenhang zwischen der gesamten Biomasse (BMI_{ges}) und der Biomasse an Zeigerpflanzen (BMI₂) vor, der auf die gleichen Wachstumsbedingungen zurückzuführen ist. Die mittlere Korrelation zwischen Blattdachöffnung und BMI_{ges} und die schwache Korrelation zwischen der Hangneigung und dem BMI_{ges} bestätigen dies. Im Jahr 2016 ist der Zusammenhang zwischen der gesamten Biomasse (BMI_{ges}) und der Biomasse an Zeigerpflanzen (BMI₂) nur noch schwach ausgeprägt. Hier scheint sich die Abhängigkeit zum Lichtangebot (Blattdachöffnung) zu verschieben.

Interessant sind die schwachen, negativen Korrelationen zwischen der Anzahl Stubben in der Gasse, der Hangneigung und der Spurausprägung. Das Vorhandensein von Stubben sowie eine steile Hangneigung scheinen hier die Spurausprägung zu reduzieren. Ursachen hierfür können eine armierende Wirkung der Baumwurzeln sowie die verlagerte Druckverteilung auf die Räder sein. Die Abbildung 45 verdeutlicht, dass in Hanglagen der durch Auflast bedingte Bodendruck tiefer in den Unterboden eindringt, als dies in der Ebene der Fall ist. Gleichzeitig sind die Bodendrücke im Oberboden geringer, so dass die Spurausprägung hier geringer ausfällt. Demnach ist das Fehlen eines Spurbilds nicht zwingend ein Garant für geringe Strukturstörungen sondern kann im Gegenteil auch auf Bodenverdichtungen in tieferen Bodenbereichen hindeuten.

Abbildung 45: Veränderung des Bodendrucks durch Befahrung in Hanglagen.

Die Abbildung verdeutlicht skizzenhaft die tieferreichende Bodenbelastung durch Auflast in Hanglagen gegenüber Befahrungen in der Ebene. Ebenfalls zu beachten ist die schwache, negative Korrelation zwischen dem BMI_{ges} und der Spurausprägung, d.h. je ausgeprägter das Spurbild ist, umso geringer fällt der oberirdische, krautige Biomasseaufwuchs aus. Gleichzeitig zeigt die Abbildung 39, dass teilweise die gekalkten und mit Aussaat versehenen Gassen einen stärkeren BMI_{ges} als die Referenzgassen aufweisen. Es ist daher zu überprüfen, wie sich die Maßnahmen auf das Wurzelwachstum ausgewirkt haben, um hieraus Rückschlüsse auf die Bodenregeneration ableiten zu können (s. auch Sparrer 2017). Erste Untersuchungen an den Perforationslöchern zeigen, dass sich die S20 Variante zwar nicht durch ein oberirdisches Pflanzenwachstum aber durch eine tiefer reichende Durchwurzelung auszeichnet (s. Tabelle 27).

5.2 Ergebnisse der Messinstallationen

5.2.1 Verlauf des Matrixpotentials

Die gemessenen Werte des Matrixpotentials liegen zwischen 0 und -2540 hPa (Zeitraum 2013 – 2014). Dauerhafte Minimalwerte weisen auf technische Fehler wie Kabelbruch oder mangelnden Bodenkontakt des Sensors hin und wurden von der Auswertung ausgeschlossen. Die Analyse der Häufigkeitsverteilung zeigt, dass 75% der Messwerte des Matrixpotentials zwischen -50 hPa und -150 hPa liegen. Der Median ist -100 hPa. Das entspricht ungefähr der Variationsbreite des Matrixpotentials im Bereich der Feldkapazität der langsam dränenden, engen Grobporen. Ein Matrixpotential < - 300 hPa (vollständige Entleerung der engen Grobporen) trat in 4% der Messwerte auf (16824 Werte von 408028 Werten insgesamt).

Matrixpotentiale von < -600 hPa waren auf die Monate Juli-September im Jahr 2013 und Mai-November im Jahr 2014 beschränkt (Abbildung 46).

Auftreten von Matrixpotential < -600 hPa

Abbildung 46 Auftreten von Matrixpotentialen stärker als 600 hPa in 6-10 cm Bodentiefe zwischen April 2013 und November 2014 (77 Watermark-Sensoren, Bestand, Mittelstreifen und Fahrspur nicht unterschieden. Ein Punkt entspricht einem 2-Stunden Messwert.)

Extremwerte des Matrixpotentials traten im Zeitraum 4.-10. September 2013 nach der Neuinstallation der Sensoren auf (s. Kapitel 4.3.3.1). Diese Werte sind vermutlich auf Störungen durch den Einbau der Sensoren zurückzuführen. Für die weitere Auswertung werden deshalb Watermark-Messwerte aus dem Zeitraum 4. bis 5.9. 2013 generell nicht berücksichtigt. Bei den Sensoren W16, W18, W19, W20, W25 und W60 verharrten die Messwerte bis zum 10.9.2013 auf dem Extremwert. Diese Extremwerte wurden ebenfalls von der Auswertung ausgeschlossen. Beim Sensor W57 klang der anfängliche Extremwert bis zum 8.9.2013 ab. Hier wurden die Messwerte ab 8.9.2013 als auswertbar eingestuft.
5.2.1.1 Matrixpotential im Bestand

5.2.1.1.1 Jahreszeitlicher Verlauf des Matrixpotentials im unbefahrenen Bestand (2013 – 2014)

Abbildung 47 lässt Austrocknungsphasen des Bodens im Sommer 2013 und im Spätsommer 2014 erkennen. Das höchste Matrixpotential war im August 2013 mit einem Medianwert von -830 hPa erreicht. Im Jahr 2014 trocknete der Boden weniger aus und erreichte den Medianwert -230 hPa im September. Der Median des Matrixpotentials im September 2013 betrug ebenfalls -230 hPa.

Abbildung 47 Häufigkeitsverteilung des Matrixpotentials (2-stündliche Messwerte) in den Monaten Mai 2013 bis Dezember 2014 im unbefahrenen Bestand

5.2.1.1.2 Räumliche Heterogenität des Matrixpotentials im unbefahrenen Bestand der Versuchsfläche

In Abbildung 48 sind die Messwerte des Matrixpotentials im Zeitraum August-September 2014 an den verschiedenen Messpunkten im Bestand der Versuchsfläche zusammengestellt. Einfache Varianzanalyse mit den in pF umgerechneten Messwerten [log(hPa * -1)] bestätigt das Vorhandensein signifikanter Unterschiede zwischen den Messpositionen. Die Messpositionen mit der geringsten Bodenfeuchte im Bestand lagen neben den Gassen 26 und 49, die relativ feuchtesten Punkte lagen neben den Gassen 24 und 38.

Wasserspannung Bestand Abt. 1052 August-September 2014

Abbildung 48 Matrixpotential an den Messpunkten im unbefahrenen Bestand der Abt. 1052 im Zeitraum August-September 2014

Die Häufigkeitsverteilung der Matrixpotential-Messwerte im August-September 2014 für alle Messpositionen zusammengenommen zeigt Tabelle 30.

Tabelle 30 Häufigkeitsverteilung der Matrixpotential-Messwerte im Bestand der Abt. 1052 (Aug.-Sep. 2014)

Quantil	0% (Min)	25%	50% (Median)	75%	100% (Max)
hPa	-840	-320	-240	-180	-30

5.2.1.2 Matrixpotential der Referenzgassen

5.2.1.2.1 Vergleich der Referenz-Rückegassen zum Bestand (Auswirkung des Befahrens)

Der monatliche Verlauf des Matrixpotentials im Mittelstreifen und in der Fahrspur der Referenz-Rückegassen (ohne Regenerationsmaßnahmen) ist in den Abbildung 48 und Abbildung 49 dargestellt.

Abbildung 49 Häufigkeitsverteilung des Matrixpotentials (2-stündliche Messwerte) in den Monaten Mai 2013 bis Dezember 2014 im Mittelstreifen

Abbildung 50 Häufigkeitsverteilung des Matrixpotentials (2-stündliche Messwerte) in den Monaten Mai 2013 bis Dezember 2014 in der Fahrspur

Im Vergleich zu Abbildung 48 zeigt sich eine stark verringerte Entwässerungsdynamik des Bodens in den Rückegassen. Dies gilt nicht nur für den verdichteten und verkneteten Boden in der Fahrspur,

sondern auch für den bodenmechanisch geringer beeinträchtigten Mittelstreifen der Rückegasse. Die Trockenphase im Sommer 2013 führte auch im Mittelstreifen und in der Fahrspur der Rückegassen zu einem Anstieg der Matrixpotentials – allerdings in geringerem Ausmaß als im unbefahrenen Bestand. Die Zunahme der Bodentrockenheit im Sommer/Spätsommer 2014 ist bei den Messwerten aus Fahrspur und Mittelstreifen nicht erkennbar. Dennoch wird im folgenden Abschnitt der Zeitraum August und September 2014 für den Vergleich der verschiedenen Referenz-Rückegassen betrachtet, um dem Vorgehen bei der Analyse der räumlichen Heterogenität des unbefahrenen Bestandes zu entsprechen.

5.2.1.2.2 Vergleich der Referenz-Rückegassen im Zeitraum August und September 2014

Tabelle 31 zeigt die Häufigkeitsverteilungen der Matrixpotential-Messwerte aus dem Zeitraum August-September 2014 für Mittelstreifen und Fahrspur in den drei Referenzgassen, bei denen nach dem Befahren keine Regenerationsmaßnahmen durchgeführt wurden. Der 50%-Interquartilbereich liegt im Mittelstreifen zwischen -130 und -50 hPa und weist damit auf deutlich feuchtere Bodenverhältnisse als im Bestand hin (50% Interquartil Bestand = -320 ...-180 hPa). In der Fahrspur besteht eine schwache Tendenz zu geringerer Bodenfeuchte (50% Interquartil = -170...-90 hPa). Es bleibt aber auch dort ein erheblicher Unterschied zur Bodenfeuchte im Bestand.

Im Vergleich der drei Referenzgassen (Tabelle 31) ist eine leichte Tendenz zu trockeneren Verhältnisse bei der Gasse 26 erkennbar. Das entspricht der auch im unbefahrenen Bestand festgestellten stärkeren Austrocknung des Bodens in diesem Bereich der Untersuchungsfläche.

Quantil	0% (Min)	25%	50% (Median)	75%	100% (Max)
Position					
Mittelstreifen					
G26M	-210	-160	-140	-100	-20
G34M	-210	-110	-60	-50	-30
G48M	-140	-100	-60	-40	-30
Fahrspur					
G26S	-220	-170	-140	-120	-20
G34S	-380	-210	-140	-80	-30
G48S	-190	-130	-100	-30	-20

Tabelle 31 Häufigkeitsverteilung der Matrixpotential-Messwerte (in hPa) im Mittelstreifen und in der Fahrspur der Referenz-Rückegassen (Aug.-Sep. 2014)

5.2.1.2.3 Übersicht des Matrixpotentials in 6 – 10 cm Tiefe(2013 – 2016)

Die Abbildung 51 gibt eine Übersicht des Matrixpotentials (hPa) in 6-10 cm Tiefe im unbefahrenen Boden ctrl (links), Mittelstreifen (mitte) und Fahrspur (rechts) der Referenzgassen im Zeitraum April bis Oktober der Jahre 2013 bis 2016 wieder.

Abbildung 51: Matrixpotential (hPa) in 6-10 cm Tiefe in unbefahrenem Boden ctrl (links), Mittelstreifen (mitte) und Fahrspur (rechts) der Referenzgassen im Zeitraum April bis Oktober der Jahre 2013 bis 2016. Die blaue horizontale Linie entspricht 300 hPa.

5.2.1.3 Matrixpotential der Maßnahmenvarianten

5.2.1.3.1 Boden-Matrixpotential in Rückegassen mit verschiedenen Bodenbehandlungen zur Regenerationsförderung

Das Matrixpotential im Zeitraum August und September 2014, in den mit verschiedenen Maßnahmen zur Regenerationsförderung behandelten Rückegassen, ist in Abbildung 52 und Abbildung 53 dargestellt.

In neun der 16 behandelten Rückegassen wurde im Mittelstreifen ein tendenziell höheres Matrixpotentiale als in den unbehandelten Referenzgassen

Bodenbehandlungen:

S20: Bodenperforation 20 cm Lochabstand
S20K: Bodenperforation 20 cm Lochabstand + flächige Kalkung
S50: Bodenperforation 50 cm Lochabstand
S50Kd: Bodenperforation Lochabstand + Lochfüllung mit Branntkalk
S50K: Bodenperforation 50 cm Lochabstand + flächige Kalkung
S50KP: Bodenperforation 50 cm Lochabstand + flächige Kalkung + Ansaat
S50P: Bodenperforation 50 cm Lochabstand + Ansaat
Kalk: flächige Kalkung

gemessen. Allerdings traten zwischen den zwei gleich behandelten Rückegassen sehr oft große Unterschiede im Matrixpotential des Bodens auf. In der Fahrspur waren die Verhältnisse noch uneinheitlicher. Es fällt deshalb schwer, die Wirkung der Maßnahmen auf die Bodenfeuchte zu beurteilen. Mit Ausnahme der Fahrspur in Rückegasse 24 (S50Kd: Lochfüllung mit Branntkalk) blieb die Austrocknung des Bodens im Sommer 2014 auch unter dem Einfluss der Regenerationsmaßnahmen hinter der des unbefahrenen Bestandes zurück (vgl. Abbildung 48 und Tabelle 30).

Matrixpotential Aug.+Sep.2014 Bereich M

Abbildung 52 Matrixpotential im Mittelstreifen der Rückegassen mit verschiedenen Bodenbehandlungen (August + September 2014). Die Zahlen der untersten Zeile sind die Gassennummern.

Matrixpotential Aug.+Sep.2014 Bereich S

Abbildung 53 Matrixpotential in der Fahrspur der Rückegassen mit verschiedenen Bodenbehandlungen (August + September 2014). Die Zahlen der untersten Zeile sind die Gassennummern.

Die in Tabelle 32 dargestellten Quantile der Matrixpotential-Häufigkeitsverteilung zeigen, dass die sommerliche Bodenfeuchte unter dem Einfluss der Bodenbehandlungen den Verhältnissen der unbehandelten Rückegassen (Tabelle 31) insgesamt entspricht.

Tabelle 32 Häufigkeitsverteilung der Matrixpotential-Messwerte (in hPa) im Mittelstreifen und in der Fahrspur der Rückegassen mit Regenerationsmaßnahmen (Aug.-Sep. 2014)

Quantil	0% (Min)	25%	50% (Median)	75%	100% (Max)
Position					
Mittelstreifen	-510	-180	-120	-60	0
Fahrspur	-1240 ¹⁾	-180	-100	-30	0

¹⁾ zehn Datensätze aus Gasse 36 (Sensor W45) mit Extremwerten ≤ -2230 hPa ausgeschlossen

5.2.1.3.2 Matrixpotential in den Fahrspuren der Maßnahmenvarianten in 20 cm uGOK (2016)

Die Abbildung 54 zeigt die Mittelwerte des Matrixpotentials in 20 cm Bodentiefe in der Fahrspur der Rückegassen bei verschiedenen Behandlungen im vierten Untersuchungsjahr. Die Gassen der Maßnahme S20K (Bodenperforation 20 cm Lochabstand + flächige Kalkung) entwickeln im Verlauf der Vegetationsperiode 2016 ein kontinuierlich steigendes Matrixpotential, welches sich im Herbst als signifikant erhöht gegenüber den anderen Gassen erweist. Ursache hierfür kann das durch Lochstanzen geförderte Tiefenwachstum der Wurzeln der krautigen Vegetation sein, wie es auch bei Sparrer (2017) beobachtet wird.

Abbildung 54: Mittelwerte des Matrixpotentials in 20 cm Bodentiefe in der Fahrspur der Rückegassen bei verschiedenen Behandlungen. Die rote Linie kennzeichnet den pF-Mittelwert während der Betrachtungszeit im unbefahrenen Bestand.

Mit: Kalk = flächige dolomitische Kalkung, K = flächige dolomitische Kalkung kombiniert mit Bodenperforation, Kd = Füllung der Perforationslöcher mit Branntkalk, P = Ansaat Schattenrasen, S20 = Bodenperforation 20 cm Lochabstand, S50 = Bodenperforation 50 cm Lochabstand. Anzahl der ausgewerteten Sensoren: Ref 5, Kalk 5, S20K 4, S50K 4, S50K 4, S50KP 4, S20 2, S50 2, S50P 4. Der pF-Mittelwert jedes Sensors geht als ein Wert in die Berechnung ein.

5.2.1.4 Häufigkeit von Vernässung anzeigenden Messwerten (2014)

Ein Matrixpotential im Boden zwischen 0 und -30 hPa entspricht einem vernässten Bodenzustand. Tabelle 33 zeigt, dass im Jahr 2014 Vernässung im unbefahrenen Bestand praktisch nicht vorgekommen ist. Im Mittelstreifen der Rückegassen trat Vernässung ebenfalls selten auf. Ausnahmen sind die Gassen 47 (S50K.b) und 38 (S50P.b), wo auch im Mittelstreifen häufig Vernässung angetroffen wurde. In den Fahrspuren traten Vernässungssituationen häufiger auf als im Mittelstreifen. In den Spuren mit Bodenperforation war die Vernässungshäufigkeit gegenüber denen ohne Perforation gesteigert. Tabelle 33 Anteil der Messwerte mit Matrixpotential größer oder gleich -30 hPa an der Gesamtzahl der Messwerte 2014 in verschiedenen Bereichen der Versuchsfläche. S20 umfasst die Behandlungen S20 und S20K. S50 umfasst die Behandlungen S50, S50Kd, S50KP, S50P.

Sensorposition	März-Dez	Aug-Sep
Bestand	3%	0%
Mittelstreifen ohne Bodenperforation	4%	5%
Mittelstreifen S20	5%	7%
Mittelstreifen S50	14%	16%
Fahrspur ohne Bodenperforation	14%	16%
Fahrspur S20	21%	28%
Fahrspur S50	21%	28%

5.2.1.5 Diskussion zum Matrixpotential

5.2.1.5.1 Niederschläge im Verlauf der Jahre 2013 bis 2015

Abbildung 31 in Kapitel 4.3.7 zeigt die 7-Tage-Wasserbilanz der NWFVA-Monitoringfläche. Hier wurden in den Jahren 2013, 2014, und 2015 1009 mm, 1045 mm und 1029 Niederschlag gemessen. Die kalkulierte Wasserbilanz fiel für jedes Jahr mit 338 mm, 283 mm und 316 mm positiv aus.

In dem Zeitraum vom 08. Mai bis zum 10. September, in dem die Messungen der Wasserspannung und der CO₂-Konzentration durchgeführt wurden, betrug der Niederschlag 377 mm, 485 mm und 328 mm. Für die Jahre 2013 und 2015 wurden in diesem Zeitraum mit –48 mm und –55 mm negative Wasserbilanzen kalkuliert. Die Wasserbilanz für das Jahr 2014 fiel hingegen mit 102 mm positiv aus.

Der Verlauf des Matrixpotentials im Boden des unbefahrenen Bestandes der Untersuchungfläche Abt. 1052 spiegelt den Witterungsverlauf ungefähr wider. Bemerkenswert ist, dass trotz des regenreichen Sommers 2014 ein Rückgang des Bodenwasservorrats im August und September 2014 messbar war.

5.2.1.5.2 Vergleich mit Literaturwerten

Andere Werte aus dem Solling

Das in der Untersuchungsfläche Abt. 1052 gemessene Matrixpotential entspricht den Verhältnissen, die von Ellenberg et al. (1986) und Schlipka (2002) von der Ökosystemforschungsfläche B1 im Solling berichtet werden. "Zumindest im Mineralboden steigen die Saugspannungen […] nur selten über den Messbereich (700-800 mbar), ja nur selten über 300 mbar." (Ellenberg et al. 1986: 373). Im Sommer und Spätsommer kann es zu Schwankungen des Matrixpotentials auf Werte bis < -600 hPa kommen. Diese sind aber nur kurzfristig. Der Wasservorrat wird von den selten länger als 10 Tage fehlenden Regenfällen schnell wieder aufgefüllt. Die Austrocknung des Bodens in der Versuchsfläche Abt. 1052 im Sommer des Jahres 2014 war vor diesem Hintergrund ungewöhnlich stark.

"Das entgegengesetzte Extrem des Wassergehaltes im Oberboden, übermäßige Nässe, tritt im Oberboden der untersuchten Sollingwälder ähnlich selten ein wie ein zu großer Wassermangel." (Ellenberg et al. 1986: 374). Die Messwerte der Versuchsfläche deuten an, dass durch die Bodenregenerationsmaßnahmen eine Bodenvernässung eher begünstigt als beseitigt wurde.

5.2.1.5.3 Homogenität der Untersuchungsfläche

Die Messwerte aus dem unbefahrenen Bestand lassen keinen Gradienten der Bodenfeuchte in der Untersuchungsfläche erkennen. Die Unterschiede im August-September 2014 zwischen den verschiedenen Sensorpositionen sind geringer als der generelle Unterschied zwischen den Sensoren aus dem unbefahrenen Bestand und denen in der Rückegasse.

5.2.1.5.4 Wie hat sich das Befahren auf das Matrixpotential ausgewirkt?

Das Befahren hat zu einer stärkeren Wasserfüllung des Porensystems im Boden geführt. Während der Witterungsverlauf im unbefahrenen Bestand eine deutliche Dynamik des Matrixpotentials bewirkte, ist dieser Effekt in den Mittelspuren der Rückegassen gar nicht und in den Fahrspuren stark abgeschwächt zu erkennen. Das weist darauf hin, dass der Entzug von Bodenwasser durch Transpiration in den Rückegassen stark reduziert ist. Die Tatsache, dass dieser Effekt auch im wenig verdichteten Boden des Rückegassen-Mittelstreifens auftritt, lässt sich so deuten, dass die Baumwurzeln im Mittelstreifenboden vom Transpirationssystem der Bäume abgekoppelt sind. In diesem Zusammenhang sind die Ergebnisse eines Befahrungsversuchs von Huber et al. (2011) interessant, bei dem der Bodenwassergehalt in Rückegassen eines Fichtenbestandes mit und ohne Auflage von Reisigmatten gemessen wurde (zitiert in Borchert 2013). Es zeigte sich dass der Wasserentzug aus dem Boden im Mittelstreifen in den Gassen mit Reisigmatte dem des Bestandes entsprach, während in den ungeschützt befahrenen Gassen der Wasserentzug im Mittelstreifen reduziert war.

5.2.1.5.5 Ist eine zeitliche Entwicklung des Boden-Porensystems erkennbar?

In den ersten beiden Jahren nach der Befahrung ist kein zeitlicher Trend im Matrixpotential des Bodens der Rückegassen erkennbar. Das Jahr 2014 war allerdings regenreicher als das Jahr 2013. Dadurch könnte eine Entwicklung zu einem geringer Wasser gefüllten Porensystem überdeckt worden sein.

5.2.1.5.6 Sind Effekte von Maßnahmen auf das Matrixpotential erkennbar?

Die experimentellen Bodenbehandlungen wurden jeweils an zwei Rückegassen parallel durchgeführt. Zwischen diesen Parallelen unterschied sich das Matrixpotential in 6 cm uGOK häufig sehr stark, so dass Unterschiede aktuell nicht auf die Bodenbehandlung zurückgeführt werden können. Erst im Jahr 2016 wurde die Untersuchung auf das Matrixpotential in 20 cm uGOK ausgeweitet. Hier erwies sich das Matrixpotential der Maßnahme S20K (Lochstanzen im 20 cm Abstand + flächige Kalkung) als signifikant erhöht gegenüber den anderen Untersuchungsgassen (s. Kapitel 5.2.1.3.2).

5.2.1.6 Schlussfolgerung zum Verlauf des Matrixpotentials

Was ist gesicherte Erkenntnis, was sind offene Fragen?

Die Watermark-Messungen haben bestätigt, dass das Boden-Matrixpotential im Solling nur relativ geringen Schwankungen unterliegt und generell eine gleichmäßige Wasserversorgung im Variationsbereich der Feldkapazität angenommen werden kann.

Die Messungen haben weiter bestätigt, dass die Befahrung des Waldbodens die Häufigkeit von Bodenvernässungen steigert. Die Vermutung, dass Baumwurzeln im Mittelstreifen geschädigt sind und nicht an der Bestandestranspiration teilnehmen können, ist noch unbelegt.

Offen ist noch die Frage, wie die starken Wasserhaushaltsunterschiede zwischen den Behandlungsparallelen zu erklären sind. Spielt das Mikrorelief in der Fahrspur eine Rolle? (Sensorposition vor oder nach einer abflussbehindernden Barriere in der Fahrspurrinne?).

Ebenfalls weiter zu beobachten ist die Entwicklung des Matrixpotentials im Unterboden in Bezug auf eine tiefere Durchwurzelung der krautigen Vegetation bei der Lochstanzvariante (s. Kapitel 5.2.1.3.2).

5.2.2 Verlauf der CO₂-Konzentration (in 6 cm Bodentiefe)

Die CO₂-Konzentration der Bodenluft in ca. 6 cm Tiefe (im Folgenden als [CO₂] abgekürzt) gilt als besonders geeigneter Indikator für eine befahrungsbedingte Schädigung des Porensystems (Gaertig et al. 2002, Gaertig und Green 2008, Goutal et al. 2012). Ursprünglich war geplant, [CO₂] in mehreren Messkampagnen an einzelnen Terminen mit einer von Gaertig entwickelten Einstichsonde zu erfassen. Begleitend sollten an wenigen Punkten kontinuierliche [CO₂]-Messungen mit einem im Boden vergrabenen Sensor mit Datenlogger erfolgen. Dieser Plan wurde aufgegeben, weil die Messung mit der Gaertig-Sonde sich als sehr zeitaufwändig erwies (ca. 10 Minuten für einen Messpunkt). Als bei der Messung freies Wasser aus dem Boden angesaugt worden war, kam es darüber hinaus sehr früh zu einem Ausfall der Sonde und der Notwendigkeit einer Reparatur. Daraufhin wurde entschieden, stärker auf kontinuierliches [CO2]-Datalogging mit permanent vergrabenen Sensoren zu setzen und die Anzahl der Messeinheiten entsprechend zu erhöhen. Eine Übersicht zu den Messzeiträumen und Sensorpositionen ist Kapitel 4.3.3.2 zu entnehmen. Eine Übersicht der Messergebnisse ist Abbildung 55 zu entnehmen.

Abbildung 55: CO2-Konzentration der Bodenluft in 5-7 cm Tiefe ([CO2]) in unbefahrenem Boden (ctrl), Mittelstreifen zwischen Fahrspuren und in Fahrspuren von April nis Oktober in den Jahren 2013 bis 2015. Die horizontale rote Linie zeigt 1 % [CO2] an (unterschiedliche Skalierung der Y-Achsen). Die gepunkteten vertikalen Linien kennzeichnen den Zeitraum 08. Mai bis 10. September. (Aus: Fründ und Averdiek 2016: For. Ecol. Manage. 380: 224-231).

5.2.2.1 Übersicht zur CO₂-Konzentration (2013 – 2014)

Die gemessenen CO₂-Konzentrationen in der Bodenluft in 6 cm uGOK reichen von 0% bis 20,01% CO₂. 0% und 20,01% sind die technischen Schranken des Messbereichs der Sensoren und können nicht als echte Messwerte gesehen werden. Bei Ausschluss dieser Werte aus dem Datensatz ergeben sich folgende Maßzahlen der Häufigkeitsverteilung: Minimum = 0,001%; Maximum = 19,995%; Median = 0,770%; 25% Quartil = 0,383%; 75% Quartil = 1,520%. Eine Übersicht der [CO2]-Messwerte zeigt Abbildung 56.

Abbildung 56 CO2-Konzentration in 6 cm Bodentiefe an allen Messpositionen im Verlauf der Jahre 2013 und 2014. Histogramm der Häufigkeitsverteilung als Inset links oben.

5.2.2.2 Jahreszeitlicher Verlauf von [CO₂] im unbefahrenen Bestand (2013 – 2014)

[CO2]-Messungen im unbefahrenen Bestand wurden an zwei Messpositionen vorgenommen: neben Gasse 26 (Ref.a) und neben Gasse 48 (Ref.c). Wie Tabelle 34, Abbildung 57 und Abbildung 58 zeigen, gibt es nur geringe Unterschiede zwischen den beiden Messpositionen.

Tabelle 34 Mittelwert und Häufigkeitsverteilung von [CO₂] an den beiden Messpunkten im unbefahrenen Bestand (gesamte Messperiode 2013-2014)

Messpunkt	Mittelw.	Median	Min	Q25	Q75	Max
G26 (Ref.a)	0,353	0,339	0,104	0,250	0,418	1,023
G48 (Ref.c)	0,297	0,207	0,003	0,131	0,458	1,003

Abbildung 57 zeigt den zeitlichen [CO2]-Verlauf. An beiden Messpositionen bleibt $[CO_2]$ weitgehend unter 0,5% und erreicht im Dezember 2013 und im Sommer 2014 phasenweise Werte bis 1% CO_2 .

Abbildung 57 CO₂-Konzentrationen in 6 cm Bodentiefe im unbefahrenen Bestand im Verlauf der Jahre 2013 und 2014

Abbildung 58 Häufigkeitsverteilung der CO₂-Konzentration in 6 cm Bodentiefe (stündliche Messwerte) in den Monaten Mai 2013 bis Dezember 2014 im unbefahrenen Bestand

In Abbildung 58 sind die [CO2]-Messwerte im unbefahrenen Bestand monatsweise zusammengefasst entsprechend der Darstellung des Matrixpotentials. Die beiden Jahre 2013 und 2014 zeigen einen gegensätzlichen Verlauf. Absinken von [CO2] in den Monaten Juni bis September in 2013 und Ansteigen im gleichen Zeitraum im Jahr 2014. In der Haupt-Vegetationszeit (Mai bis September) traten im Jahr 2014 höhere [CO2]-Werte als im Jahr 2013 auf. Das entspricht den unterschiedlichen Witterungsverläufen in den beiden Jahren. Im Juli 2013 war der Boden erheblich trockener (Matrixpotential um -800 hPa) als im Jahr 2014 (Matrixpotential um -200 hPa). Der [CO2]-Anstieg in den Monaten November und Dezember 2013 hat keine Entsprechung im Folgejahr. Die Matrixpotentiale im Boden 2013 und 2014 unterscheiden sich für diesen Zeitraum nicht wesentlich. Es muss noch geprüft werden, in welchem Ausmaß technische Faktoren die Messungen in diesem Zeitraum beeinflusst haben (Probleme mit eindringendem Wasser und kondensierender Nässe, vertikaler Einbau der Sensoren).

5.2.2.3 Vergleich der Referenz-Rückegassen zum Bestand (Auswirkung des Befahrens 2013 - 2014)

Wie Abbildung 59 und Abbildung 60 zeigen, ist [CO2] in den Rückegassen deutlich höher als im unbefahrenen Bestand (die Skala reicht in Abbildung 58 bis 2% CO₂, in Abbildung 59 und Abbildung 60 bis 10% CO₂). Im ersten Jahr nach der Befahrung (2013) liegen die Medianwerte in der Fahrspur im Juni und Juli über 5% CO₂ und sinken danach auf Werte zwischen 1% und 2% CO₂ ab. Im Mittelstreifen ist [CO2] von Mai bis August relativ gleichmäßig zwischen 1% und 1,5% CO₂. Im September und Oktober kommt es zu Ausreißern mit Messwerten über dem 75% Quantil. Im November und Dezember 2013 kommt es zu Extremwerten und starken Schwankungen, die vermutlich durch Nässe in den Sensoren und daraus folgende Funktionseinschränkungen (mit) bedingt sind.

Abbildung 59 [CO2] 2013-2014 im Mittelstreifen der Referenzgassen

Abbildung 60 [CO2] 2013-2014 in der Fahrspur der Referenzgassen

Der tabellarische Vergleich der Messwerte in Tabelle 35 macht noch einmal deutlich, dass [CO2] im unbefahrenen Bestand deutlich niedriger ist, als in den Rückegassen. Im Vergleich der Jahre zeigt sich ein leicht höheres [CO2] 2014 im unbefahrenen Bestand während das Mittel der Monatsmediane in den Rückegassen 2014 mindestens auf die Hälfte des Wertes von 2013 zurückgegangen ist.

Tabelle 35 Monats-Medianwerte und 50%-Interquartile der CO₂-Konzentration in 6 cm Bodentiefe in den Referenz-Rückegassen. Mittelwerte für 2014 umfassen den Zeitraum Mai bis Dezember.

Monat	Bes	stand		Mitte	lstreife	n	Fahi	rspur	
	Median	Q25	Q75	Median	Q25	Q75	Median	Q25	Q75
Mai. 13	0,29	0,12	0,42	1,30	1,15	1,47			
Jun. 13	0,20	0,15	0,36	1,37	1,23	1,50	6,06	5,57	6,70
Jul. 13	0,18	0,15	0,22	1,63	1,37	2,04	5,56	3,85	6,30
Aug. 13	0,19	0,07	0,22	1,08	1,00	1,29	1,87	1,10	2,46
Sep. 13	0,17	0,08	0,32	1,12	0,59	1,45	0,95	0,81	2,22
Okt. 13	0,23	0,09	0,36	1,46	1,31	2,06	1,38	0,91	2 <i>,</i> 93
Nov. 13	0,67	0,62	0,71	2,41	1,84	9,18	1,58	1,27	2,02
Dez. 13	0,68	0,63	0,73	5,76	2,30	13,08	1,32	1,17	1,52

-									
Monat	Bestand			Mittelstreifen			Fahrspur		
	Median	Q25	Q75	Median	Q25	Q75	Median	Q25	Q75
MW 2013	0,33			2,02			2,67		
Mrz. 14	0,14	0,14	0,15	0,16	0,14	0,33	0,43	0,36	0,49
Apr. 14	0,22	0,20	0,24	0,45	0,20	0,60	0,47	0,37	0,56
Mai. 14	0,40	0,29	0,43	0,95	0,57	1,33	0,85	0,74	0,98
Jun. 14	0,43	0,39	0,48	1,63	1,35	1,91	0,98	0,81	1,83
Jul. 14	0,60	0,49	0,73	2,93	2,60	3,36	1,45	1,22	2,35
Aug. 14	0,37	0,30	0,47	0,41	0,32	2,35	1,33	1,18	1,43
Sep. 14	0,42	0,31	0,53	0,92	0,37	2,11	1,16	0,81	1,30
Okt. 14	0,47	0,41	0,53	0,98	0,42	1,66	1,12	0,74	1,46
Nov. 14	0,33	0,30	0,38	0,40	0,25	0,93	1,11	0,65	2,23
Dez. 14	0,20	0,17	0,28	0,13	0,12	0,32	0,48	0,45	7,25
MW 2014 ^{*)}	0,40			1,05			1,06		

*) Mittelwertberechnung nur für den Zeitraum Mai bis Dezember

5.2.2.4 [CO2] in Rückegassen mit verschiedenen Bodenbehandlungen zur Regenerationsförderung (2013 – 2014)

Für den Wirkungsvergleich der Bodenbehandlungen auf [CO2] wurde der Monat Juli gewählt. In beiden Untersuchungsjahren arbeiteten die Sensoren in diesem Zeitraum sehr zuverlässig. Die CO₂-Produktion im Boden ist im Juli temperaturbedingt hoch. Deshalb ist [CO2] in diesem Zeitraum ein guter Indikator für die Luftleitfähigkeit des Bodens.

Abbildung 61 [CO2] im Mittelstreifen verschieden behandelter Rückegassen der Abteilung 1052 im Juli 2013

Abbildung 62 [CO2] im Mittelstreifen verschieden behandelter Rückegassen der Abteilung 1052 im Juli 2014

Im Mittelstreifen sind keine Effekte der Bodenbehandlungen erkennbar (Abbildung 61 und Abbildung 62). In den drei 2013 untersuchten Gassen hat keine deutliche Veränderung von [CO2] zum Jahr 2014 stattgefunden.

Abbildung 63 [CO2] in der Fahrspur verschieden behandelter Rückegassen der Abteilung 1052 im Juli 2013

Abbildung 64 [CO2] in der Fahrspur verschieden behandelter Rückegassen der Abteilung 1052 im Juli 2014

In der Fahrspur (Abbildung 63 und Abbildung 64) war [CO2] 2013 in der Behandlungsvariante S50Kd.a (Gasse 24) deutlich niedriger als in den anderen Varianten und der Referenz. Ansonsten waren die [CO2]-Werte in den Behandlungsvarianten wie in der Referenz im Jahr 2013 sehr hoch. Be-

sonders hohe Werte traten in der Variante S50 auf (Gassen 28 und 37). Im Juli des Jahres 2014 wurden in den Fahrspuren generell erhebliche niedrigere [CO2]-Werte gemessen als im Jahr 2013. Mit hohen Werten ragen die Varianten S50.b (Gasse 37), S50KP.b (Gasse 46) und Ref.a (Gasse 26) heraus. Zwischen den zwei Feldwiederholungen einer Behandlungsmaßnahme traten große Unterschiede im [CO2] auf. Standörtliche Varianz kommt deshalb als Ursache des [CO2]-Verteilungsbildes ebenso in Frage wie eventuelle Behandlungseffekte. Bei den drei 2013 und 2014 in beiden Feldwiederholungen untersuchten Behandlungen hat sich das [CO2]-Verhältnis zwischen a- und b-Variante von 2013 zu 2014 jeweils umgedreht.

Der Vergleich der arithmetischen Mittelwerte des [CO2] in den beiden Jahren in einem zwei-Wochen Zeitraum Ende Juli bestätigt das Absinken von [CO2] in den Rückegassen im zweiten Jahr nach der Befahrung während die Werte im unbefahrenen Bestand eher ansteigen und auch die Bodenfeuchte 2014 höher ist als 2013 (Tabelle 36).

Tabelle 36 Mittelwert der CO2-Konzentration in 6 cm Bodentiefe im Zeitraum 26.06. bis 04.07. in den Jahren 2013 und 2014

Gasse	Position	2013	2014
G26	Spur Ref	5,79	2,17
G48	Spur Ref	4,85	0,95
G32	Spur S50KP	6,17	1,60
G46	Spur S50KP	1,29	2,40
G28	Spur S50	10,69	0,53
G24	Spur S50Kd	2,38	1,04
	Mittelwert	5,19	1,45
MW G	48, G32, G46	4,10	1,65
G48	Mitte Ref	1,45	2,44
G32	Mitte S50KP	0,21	0,35
G46	Mitte S50KP	3,11	0,79
	Mittelwert	1,59	1,19
G26	Bestand	0,30	0,49
G48	Bestand	0,15	0,53
	Mittelwert	0,22	0,51
Boden	temperatur ^{*)}	11,4°C	11,3°C
Matrix	potential (pF) ^{*)}	2,12	1,94

*) Bodentemperatur und Matrixpotential sind Mittelwerte aus 5-6 cm Tiefe von den 2013 und 2014 untersuchten Gassen 24, 32 und 48.

Im Jahr 2015 war die Anzahl der in einer Fahrspur bzw. einem Mittelstreifen installierten CO2-Sensoren auf drei erhöht worden bei gleichzeitiger Beschränkung der Untersuchung auf weniger Behandlungsvarianten. Die CO₂-Konzentrationen der Bodenluft in 6 cm Tiefe im Zeitraum April bis Oktober 2015 sind in Abbildung 65 bis Abbildung 67 dokumentiert.

Abbildung 65 Häufigkeitsverteilung von [CO2] der sechs einzelnen Sensoren im unbefahrenen Bestand (6 cm Tiefe) von April bis Oktober 2015. Die Sensoren befanden sich jeweils ca. 6 m links neben den in der Ordinate genannten Rückegassen.

Abbildung 66 Häufigkeitsverteilung von [CO2] (6 cm Tiefe) zwischen April und Oktober 2015 in der Fahrspur nach fünf unterschiedlichen Behandlungen im Frühjahr 2013. Die drei Sensoren in jeder Gasse wurden zu einer Häufigkeitsverteilung gepoolt. Behandlungen: S50Kd = Bodenperforation 50 cm Lochabstand mit Branntkalkfüllung der Löcher, S50K = Bodenperforation S50 + flächige dolomitische Kalkung, S50KP = Variante S50K + Ansaat, Kalk = flächige dolomitische Kalkung ohne Bodenperforation, Ref = Gasse unbehandelt.

Abbildung 67 Häufigkeitsverteilung von [CO2] (6 cm Tiefe) zwischen April und Oktober 2015 im Mittelstreifen von zwei unbehandelten Referenzgassen. Die drei Sensoren in jeder Gasse wurden zu einer Häufigkeitsverteilung gepoolt.

In der Fahrspur deutet sich zwischen April und Oktober ein höheres [CO2] in den Gassen mit Maßnahmen zur Regenerationsförderung als in den unbehandelten Referenzgassen an. In den Diagrammen fällt eine hohe Varianz der Werte inerhalb der Versuchsvarianten und eine erhebliche Zahl von Ausreißern auf, die anzeigen, dass es zeitweise zu extremen Spitzenwerten des [CO2] gekommen ist. Das wird differenzierter im Kapitel 5.2.2.5 (Tabelle 40) betrachtet.

5.2.2.5 Häufigkeit von Porenverlust/Störung anzeigenden Messwerten

5.2.2.5.1 Jahr 2013

In Tabelle 37 wurde zusammengestellt, wie häufig im Frühjahr/Sommer 2013 bestimmte Schwellenwerte der CO₂-Konzentration überschritten wurden. In den untersuchten Fahrspuren war der Schwellenwert 1% CO₂ mit Ausnahme der Gasse 24 (Variante Kd) dauernd überschritten. In vier der sieben Gassen wurde auch die Grenze von 5% CO₂ in mehr als der Hälfte der Stundenwerte überschritten. In der Behandlungsvariante S50 kam es sogar bei 13 bis 38 Prozent der stündlichen Messwerte zu [CO2] über 10% CO₂. Von den drei untersuchten Mittelstreifen blieb [CO2] in einer Rückegasse unauffällig unter der 1%-Schwelle. Konzentrationen über 5% CO₂ traten in keinem Fall auf.

			Prozent von n mit Überschreitung von					
Pos	Var	n	> 1% CO ₂	> 2% CO ₂	> 5% CO ₂	> 10% CO ₂		
G26B	Ref.a	1781	0,0	0,0	0,0	0,0		
G48B	Ref.c	1780	0,0	0,0	0,0	0,0		
G48M	Ref.c	1299	97,8	15,5	0,0	0,0		
G32M	S50KP.a	1301	0,0	0,0	0,0	0,0		
G46M	S50KP.b	1298	64,4	0,0	0,0	0,0		
G26S	Ref.a	1268	100,0	100,0	62,7	0,0		
G48S	Ref.c	821	99,9	98,8	89,3	0,0		
G28S	S50.a	1306	100,0	99 <i>,</i> 5	91,4	38,3		
G37S	\$50.b	860	100,0	99,2	51,3	12,9		
G24S	S50Kd.a	1303	64,8	49,7	0,0	0,0		
G32S	S50KP.a	1088	100,0	94,3	39,5	0,0		
G46S	S50KP.b	753	100,0	67,2	6,4	0,0		
Mittelwert B (Bestand)			0,0	0,0	0,0	0,0		
Mittelwert I	M (Mittelstreifen))	54,1	5,2	0,0	0,0		
Mittelwert S	6 (Fahrspur)		95,0	87,0	48,7	7,3		

Tabelle 37 Prozentsatz der stündlichen [CO2]-Messwerte im Zeitraum 15. Mai bis 31. Juli 2013, an denen ein Schwellenwert der CO_2 -Konzentration überschritten wurde

5.2.2.5.1.1 Jahr 2014

In Tabelle 38 wurden die entsprechenden Prozentsätze für das Frühjahr/Sommer 2014 zusammengestellt. An vier der 12 Sensorpositionen im Mittelstreifen und an fünf der 18 Sensorpositionen in der Fahrspur überstieg [CO2] nahezu dauerhaft (in mehr als 80% der Stundenwerte) den Schwellenwert von 1% CO₂. An sechs Sensorpositionen im Mittelstreifen und an vier Sensorpositionen in der Fahrspur blieb [CO2] im betrachteten Zeitraum andererseits immer innerhalb des "Normalbereichs" im unbefahrenen Bestand bis zu 1% CO₂. [CO2] über 2% CO₂ traten mit Ausnahme einer abweichenden Fahrspur (Gasse 37, Variante S50) nicht auf.

		Prozent von n mit Überschreitung von				
Pos	Var	n	> 1% CO ₂	> 2% CO ₂	> 5% CO ₂	> 10% CO ₂
G26B	Ref.a	1805	0,0	0,0	0,0	0,0
G48B	Ref.c	1827	0,1	0,0	0,0	0,0
G26M	Ref.a	480	0,0	0,0	0,0	0,0
G48M	Ref.c	1808	98,6	47,3	0,0	0,0
G31M	Kalk.a	1827	0,0	0,0	0,0	0,0
G45M	Kalk.b	1079	11,5	0,0	0,0	0,0
G25M	S20K.a	1545	0,0	0,0	0,0	0,0
G36M	S20K.b	1829	84,1	6,6	0,0	0,0
G23M	S50K.a	1366	0,0	0,0	0,0	0,0
G47M	S50K.b	1827	100,0	<mark>89,6</mark>	0,0	0,0
G24M	S50Kd.a	1758	95,1	10,7	0,0	0,0
G49M	S50Kd.b	1809	0,0	0,0	0,0	0,0
G32M	S50KP.a	1829	0,0	0,0	0,0	0,0
G46M	S50KP.b	1600	9,7	0,0	0,0	0,0
G26S	Ref.a	1828	86,3	42,0	0,0	0,0
G48S	Ref.c	1827	35,5	0,0	0,0	0,0
G31S	Kalk.a	1793	94,3	3,9	0,0	0,0
G45S	Kalk.b	1391	0,8	0,8	0,8	0,5
G27S	S20.a	516	0,0	0,0	0,0	0,0
G33S	S20.b	1852	44,8	24,2	0,1	0,0
G25S	S20K.a	1642	71,6	0,0	0,0	0,0
G36S	S20K.b	1037	54,9	0,5	0,0	0,0
G28S	S50.a	1387	0,0	0,0	0,0	0,0
G37S	S50.b	1553	96,1	90,5	37,2	5,8
G23S	S50K.a	1829	3,1	0,0	0,0	0,0
G47S	S50K.b	1827	19 , 5	0,0	0,0	0,0
G24S	S50Kd.a	1828	47,1	0,0	0,0	0,0
G49S	S50Kd.b	1791	0,0	0,0	0,0	0,0
G32S	S50KP.a	1829	91,4	38,3	0,0	0,0
G46S	S50KP.b	1830	100,0	86,0	0,0	0,0
G35S	S50P.a	1363	0,0	0,0	0,0	0,0
G38S	S50P.b	1854	46,9	24,0	0,2	0,1
Mittelwert I	B (Bestand)		0,0	0,0	0,0	0,0
Mittelwert I	M (Mittelstreif	en)	33,2	12,8	0,0	0,0
Mittelwert S (Fahrspur)			44,0	17,2	2,1	0,4

Tabelle 38 Prozentsatz der stündlichen [CO2]-Messwerte im Zeitraum 15. Mai bis 31. Juli 2014, an denen ein Schwellenwert der CO_2 -Konzentration überschritten wurde

Tabelle 39 zeigt die [CO2]-Schwellenwertüberschreitungen im nicht durch Tabelle 37 abgedeckten Zeitraum des Jahres 2014 (28.02. bis 14.05. und 01.08. bis 05.12.2014). Die Häufigkeit der 1%-CO₂-Schwellenwertüberschreitungen ist in dieser Zeit etwas geringer, aber es kam bei vier der Fahrspuren zu Überschreitungen der 5% CO₂-Schwelle.

Tabelle 39 Prozentsatz der stündlichen [CO2]-Messwerte im Zeitraum Frühjahr (28.02.-14.05.) und Spätsommer/Herbst (01.08.-05.12.) 2014, an denen ein Schwellenwert der CO₂-Konzentration überschritten ist

			Prozent von n mit Überschreitung von				
Pos	Var	n	> 1% CO ₂	> 2% CO ₂	> 5% CO ₂	> 10% CO ₂	
G26B	Ref.a	4821	0,0	0,0	0,0	0,0	
G48B	Ref.c	4288	0,0	0,0	0,0	0,0	
G26M	Ref.a	4361	0,0	0,0	0,0	0,0	
G48M	Ref.c	4821	56,0	22,7	0,0	0,0	
G31M	Kalk.a	4662	0,0	0,0	0,0	0,0	
G45M	Kalk.b	5416	24,6	0,0	0,0	0,0	
G25M	S20K.a	4308	0,0	0,0	0,0	0,0	
G36M	S20K.b	4816	54,6	12,2	0,0	0,0	
G23M	S50K.a	3684	0,0	0,0	0,0	0,0	
G47M	S50K.b	4821	61,7	32,1	0,0	0,0	
G24M	S50Kd.a	2890	32,2	0,0	0,0	0,0	
G49M	S50Kd.b	4823	0,0	0,0	0,0	0,0	
G32M	S50KP.a	4744	0,0	0,0	0,0	0,0	
G46M	S50KP.b	4721	0,0	0,0	0,0	0,0	
G26S	Ref.a	4286	10,3	4,7	0,5	0,0	
G48S	Ref.c	4821	63 <i>,</i> 7	17,7	5,6	0,7	
G31S	Kalk.a	3600	74,6	3,3	0,0	0,0	
G45S	Kalk.b	5179	8,0	2,7	1,7	0,7	
G27S	S20.a	3070	0,0	0,0	0,0	0,0	
G33S	S20.b	4820	45 <i>,</i> 5	4,3	0,0	0,0	
G25S	S20K.a	4086	57 <i>,</i> 0	56,9	0,0	0,0	
G36S	S20K.b	4084	24,3	0,0	0,0	0,0	
G28S	S50.a	3073	8,9	0,0	0,0	0,0	
G37S	S50.b	4820	65,2	25,2	0,0	0,0	
G23S	S50K.a	4821	31,6	0,3	0,0	0,0	
G47S	S50K.b	4288	21,4	0,0	0,0	0,0	
G24S	S50Kd.a	4819	33,0	0,0	0,0	0,0	
G49S	S50Kd.b	4822	9,0	0,0	0,0	0,0	
G32S	S50KP.a	4818	80,5	26,7	0,0	0,0	
G46S	S50KP.b	4819	76,9	43,9	23,2	0,2	
G35S	S50P.a	4367	10,7	4,7	0,0	0,0	
G38S	S50P.b	4343	54,1	26,1	3,5	1,3	
Mittelwert E	3 (Bestand)		0,0	0,0	0,0	0,0	
Mittelwert N	M (Mittelstreif	en)	19,1	5,6	0,0	0,0	
Mittelwert S (Fahrspur)			37,5	12,0	1,9	0,2	

5.2.2.5.2 Jahr 2015

Die Überschreitung der 1 % [CO2]-Schwelle im Jahr 2015 (18.04.-16.10.) ist in Tabelle 40 für jeden einzelnen Sensor in einer Fahrspur dokumentiert. Es bestätigt sich die bereits oben (Abbildung 66) erkennbare Tendenz m Vergleich zur Referenz höherer CO₂-Konzentrationen im Boden der gekalkten Maßnahmenvarianten.

Tabelle 40 Anteil der Messwerte in 6 cm Bodentiefe der Fahrspur zwis	schen 18.04. und 16.10. 2015
mit [CO2] > 1%, aufgeschlüsselt nach den einzelnen Sensoren	

		Anteil
		Messwerte
Gasse:Segment	Sensor	> 1% CO2
Variante Refere	nz	
G26:1	S02	0,0%
G26:3	S42	1,8%
G26:4	S18	49,1%
G48:1	S26	1,8%
G48:3	S29	5,8%
G48:4	S31	0,0%
Mittelwert Refe	erenz	9,7%
Variante Kalk		
G31:1	S03	60,9%
G31:3	S05	48,8%
G45:1	S09	0,4%
G45:3	S11	42,7%
G45:4	S13	24,5%
Mittelwert Kalk		35,5%
Variante S50K		
G23:1	S36	12,7%
G23:3	S14	76,0%
G23:4	S17	88,2%
G47:1	S22	10,3%
G47:3	S23	12,4%
G47:4	S24	52,8%
Mittelwert S50	κ	42,1%
Variante S50Kd		
G24:1	S41	63,8%
G24:3	S37	78,1%
G24:4	S08	0,0%
G49:1	S38	0,0%
G49:3	S39	68,7%
G49:4	S40	95,7%
Mittelwert S50	(d	51,1%
Variante S50KP		
G46:1	S12	30,1%
G46:3	S21	86,5%
G46:4	S33	54,9%
Mittelwert S50	(P	57,2%

Es gibt jedoch sowohl in den Fahrspuren der Referenz eine Sensorposition mit häufiger Überschreitung der 1 % [CO2]-Schwelle als auch einzelne Sensorpositionen in den Varianten Kalk und S50Kd, wo 1 % [CO2] nicht überschritten wird. Bei der Interpretation der Befunde ist zu bedenken, dass besonders im oberflächennahen Bodenbereich der gekalkten Varianten die CO₂-Konzentration der Bodenluft nicht nur durch die Gasdurchlässigkeit des Porensystems sondern ebenfalls durch abiotische CO₂-Freisetzung aus Carbonat und durch eine bei höherem pH gesteigerte biogene CO₂-Produktion verursacht sein kann.

5.2.2.5.3 Jahr 2016 (6 cm und 20 cm Bodentiefe)

In den folgenden Tabellen wird die Messperiode der CO_2 -Messungen im Zeitraum 24.03.2016 bis 17.06.2016, mit dem Anteil der stündlichen Messwerte mit [CO2] > 1 %, dargestellt. Tabelle 41 zeigt deutlich den erhöhten Anteil an CO_2 –Konzentrationen > 1 % gegenüber dem Bestand im Bereich der Rückegassen, sowohl in 6 cm uGOK wie auch in 20 cm uGOK. Die Anteile an CO2 –Konzentrationen > 1 % in den Referenzgassen im Oberboden sind sehr variabel und liegen zwischen 0% und 34%

Tabelle 42). Im Unterboden weisen die Referenzgassen ähnlich hohe bis höhere Anteile an CO2-Konzentrationen > 1 % als die Fahrspuren der Maßnahmenvarianten auf. Die Messwerte an CO2 – Konzentrationen > 1 % weisen in den Gassen der Maßnahmenvarianten S20, S20K uns S50 Kd in 20 cm uGOK vorwiegend hohe Anteile auf (Tabelle 43). Auffällig ist, dass die S20-Varianten deutlich seltener als die Referenzgassen und die S50Kd-Variante, den 1 %-Schwellenwert überschreiten.

Tabelle 41 Anteil der Messwerte mit [[CO2] > 1 % an allen Messpunkten (20	16)
---------------------------------------	--------------------------------------	-----

Tiefe	Bestand	Mitte	Spur
5 cm	3,2%	9,6%	15,0%
20 cm	4,7%	36,6%	48,9%

Tabelle 42 Anteil der Messwerte mit [CO2] > 1 % in den unbehandelten Rückegassen

	Mittelstreife	en (M)	Fahrspur (S)		
Tiefe	Ref.a	Ref.c	Ref.a	Ref.c	
5 cm	5,3%	13,8%	33,6%	0,0%	
20 cm	42,0%	61,9%	67,4%	44,4%	

Vergleich der Tiefenstufen 5 cm und 20 cm uGOK in den beiden Referenzgassen im Jahr 2016.

Tabelle 43 Anteil der Messwerte in 20 cm Tiefe mit [CO2] > 1 % in Fahrspur und Mittelstreifen der Rückegassen mit verschiedenen Fördermaßnahmen für die Strukturregeneration

	S20.a	S20.b	S20K.a	S20K.b	S50Kd.a	S50Kd.b	Ref.a	Ref.c
Spur	20,2%	19,6%	2,3%	73,5%	90,0%	55,4%	67,4%	44,4%
Mitte	63,2%	15,5%	4,5%	6,3%	50,0%	48,0%	42,0%	61,9%

Vergleich der Maßnahmenvarianten (20 cm Tiefe) im Jahr 2016.

5.2.2.6 Diskussion zur CO₂-Konzentration

Verlauf der Bodentemperatur in den Jahren 2013 und 2014

Während der Juli im Jahr 2013 weitgehend niederschlagsfrei blieb, war der Juli 2014 durch reichlich Niederschlag (ca. 150 mm) gekennzeichnet (siehe Kapitel Matrixpotential). Die Temperaturen in 6 cm Bodentiefe waren dagegen in beiden Jahren ähnlich. Im September/Oktober waren die Bodentemperaturen im Jahr 2014 bis zu 1,4°C höher als im Jahr 2013.

Die Temperaturdaten unterstützen die Annahme, dass das Absinken von [CO2] in der Rückegasse von 2013 auf 2014 eine Regeneration des Porensystems anzeigt.

Technische Zuverlässigkeit

Die Messeinheiten arbeiteten nicht absolut störungsfrei. Es kam zu Ausfällen durch in den Sensor eindringendes Wasser und durch Feuchte bedingte Korrosion an den elektrischen Bauteilen. Das Eindringen von Wasser konnte durch die Ausrüstung der Sensorsonden mit einer PTFE-Membran ab dem Jahr 2014 verhindert werden. Der Anstieg der Luftfeuchte im Sensorgehäuse ist unvermeidlich, weil die über die Sonde herandiffundierende Bodenluft mit der Luft im gesamten Sensorgehäuse austauscht. Bei Feldkapazität ist die Bodenluft immer mit Wasserdampf gesättigt. Auf Dauer muss deshalb auch der im Boden vergrabenen Sensor einer Luftfeuchtigkeit von > 95% rF ausgesetzt sein. Die Ausrüstung der Sensorgehäuse mit Silicagel hat sich auf die Zunahme der Luftfeuchte im Sensorgehäuse langfristig nicht ausgewirkt, wie der Vergleich der Jahre 2013 (ohne Silicagel) mit 2014 in Abbildung 6 zeigt). Für die Fortführung der Messungen ist deshalb vorgesehen, die mit Trockenmittel ausgerüsteten Sensoren Ende März/ Anfang April im Boden zu installieren und den Messzeitraum auf die Zeit bis Ende Juli/ Anfang August zu beschränken.

Vergleich mit Literaturwerten

In zehn Veröffentlichungen wird über CO₂-Konzentrationen in Waldböden berichtet. Im unbefahrenen Bestand werden Werte von 0,03% bis 1,3% CO₂ berichtet, überwiegend unter 1% CO₂ (Bekele et al 2007, Amann & Schäffer 2008, Neruda et al. 2010, Goutal et al. 2012). Die CO₂-Konzentration steigt mit der Tiefe im Boden an. Häufig wurde tiefer als 5 cm gemessen. Aus Grasland und Brache wurden höhere Konzentrationen gemeldet (Grasland bis 2,92%, Brache bis 1,82%; Patil et al. 2010).

In Fahrspuren bzw. bei Bodenverdichtungen im Wald wurden Messwerte zwischen 4% und $10\% CO_2$ berichtet (Amann et al. 2009, Conlin & van Drissche 2000, Neruda et al. 2010).

In den mehrjährigen Messungen von Goutal et al. (2012) war [CO2] nur im ersten halben Jahr nach der Befahrung bis zu 5% erhöht (in 15 cm Tiefe). Danach und im Folgejahr waren die Konzentrationen im Vergleich zur nicht verdichteten Versuchsvariante unauffällig.

Wie hat sich das Befahren auf [CO2] ausgewirkt?

Das Befahren hat zu einer starken Erhöhung von [CO2] geführt. In der Fahrspur im ersten halben Jahr nach der Befahrung wurde 5 % [CO2] (mehr als 10-faches der Konzentration im unbefahrenen Boden) in fast der Hälfte der Zeit überschritten. Im Mittelstreifen lag [CO2] in dieser Zeit in mehr als der Hälfte der Zeit zwischen 1% und 2% [CO2], was immerhin dem Doppelten bis Vierfachen des unbefahrenen Bodens entspricht. Auch im zweiten Jahr nach der Befahrung ist [CO2] in der Fahrspur noch mehr als doppelt so hoch wir im unbefahrenen Boden. Mittelstreifen und Fahrspur sind sich aber im zweiten Jahr sehr ähnlich.

Ist eine zeitliche Entwicklung des Boden-Porensystems erkennbar?

Im unbefahrenen Bestand deutet sich an, dass [CO2] stärker durch das Boden-Matrixpotentials (Variation des Anteils wassergefüllter Poren) als durch Schwankungen der Bodentemperatur beeinflusst wird. Das Absinken von [CO2] in der Fahrspur von 2013 auf 2014 muss als Entwicklung des Porensystems gedeutet werden, da die klimatischen Unterschiede zwischen den Jahren eher in die entgegengesetzte Richtung weisen. Ein Rückgang von [CO2] von 2013 zu 2014 ist Im Mittelstreifen nicht erkennbar. Für diesen Bereich sollte geprüft werden, ob die Vegetationsentwicklung im Mittelstreifen (und damit erhöhte CO₂-Produktion durch Wurzelatmung) eine mögliche Entwicklung des Porensystems überdeckt.

Sind Effekte von Maßnahmen erkennbar?

Die Maßnahmen wurden auf jeweils zwei Rückegassen durchgeführt. Auf jeder Rückegasse war eine [CO2]-Messeinheit pro Fahrspur bzw. Mittelstreifen installiert. Die an den zwei gleich behandelten Rückegassen gemessenen [CO2] unterscheiden sich in der Regel mindestens ebenso stark wie die von zwei verschieden behandelten Rückegassen. Es kann vermutet werden, dass die Behandlung Bodenperforation mit 50 cm Lochabstand (S50) im ersten Jahr zu einer stärkeren Hemmung des Boden-Gasaustausches führte als in der unbehandelten Referenz. Im Juli 2014 deutet sich bei den Behandlungsvarianten S20 und S20K ein niedrigeres [CO2] an als in der Referenz. Insgesamt muss festgestellt werden, dass der Effekt der Bodenbehandlungen auf [CO2] in den ersten beiden Jahren eher gering war und das Niveau der standörtlichen Varianz nicht überschritt. Im Jahr 2015 waren die CO2-Messungen auf die mit Kalkung verbundenen Maßnahmen fokussiert und zeigten eine Tendenz zu höherem [CO2] als in der unbehandelten Referenz. Weil nach Kalkung eine zusätzliche abiotische und eine gesteigerte biogene CO2-Freisetzung in Betracht kommt, kann [CO2] hier nicht zuverlässig als Indikator für die Veränderung des luftleitenden Porensystems im Boden verwendet werden. Im Jahr 2016 zeigten sich bei der Maßnahmenvariante mit S20 Perforation Tendenzen zu geringeren CO₂-Konzentration in der Bodenluft gegenüber den übrigen beobachteten Rückegassen (s. Kapitel 5.2.2.5.3).

5.2.2.7 Schlussfolgerung/offene Fragen [CO2]

Was ist gesicherte Erkenntnis, was sind offene Fragen?

- [CO2] im unbefahrenen Bestand erreicht nur in Ausnahmefällen 1% CO2. [CO2] > 1% kann deshalb als Hinweis auf Bodenstrukturstörung gewertet werden.
- Die stark erhöhten [CO2]-Werte in den Fahrspuren im Jahr 2013 waren im Jahr 2014 deutlich abgeklungen, obwohl 2014 niederschlagsreicher war als 2013.
- Der Rückgang von [CO2] in den Fahrspuren setzte sich im Jahr 2015 fort.
- In den mit Bodenperforation und/oder Kalkung behandelten Rückegassen traten z.T. hohe
 [CO2] auf. Es gab aber große Unterschiede zwischen den Wiederholungen der gleichen Maßnahme auf verschiedenen Gassen. Insgesamt kann nur gefolgert werden, dass die Behandlungen [CO2] im Vergleich zur Referenz nicht sicher gesenkt haben.
- Eindringendes Wasser oder Luftfeuchten über 95% rF im Sensorgehäuse führten bisweilen zu Instabilität und mangelnder Vertrauenswürdigkeit der CO₂-Messwerte.

- Sensorwechsel an derselben Position (selbes Bohrloch) f
 ührte oft zu sprunghafter Abnahme des [CO2] (Sprung in der Verlaufskurve).
- ? Sind bestimmte Sensorpositionen dauerhaft besonders hoch/besonders niedrig in [CO2]? (nicht eindeutig)
- ? Ist die Phase Mai-Juli generell die Zeit mit höchstem [CO2]? (wahrscheinlich ja)
- ? Ist [CO2]-Anstieg im Herbst charakteristisch für stark bewachsenen Mittelstreifen?
- ? Ist [CO2] in mit Kalk behandeltem Boden noch als Indikator der Luftleitfähigkeit im Porensystem nutzbar?
- ? Ist eine Messung der CO₂-Konzentration in 20 cm Bodentiefe besser geeignet, um die Regeneration des Porensystems zu erfassen?
- ? Wie wirkt sich die Bodenperforation langfristig weiter aus?

5.2.3 Belüftungsverhältnisse (Eisenstabmethode)

5.2.3.1 Übersicht der Belüftungsverhältnisse

Für die Auswertung der Eisenstäbe wurden nur die Stäbe der Herbsttermine der Jahre 2013 bis 2015 verwendet (s. Zeitraum 3, 5 und 6, Kapitel 4.3.3.3). Zu dieser Jahreszeit ist der Boden voraussichtlich feucht, aber noch nicht wieder wassergesättigt, so dass mögliche Unterschiede in der Bodenbelüftung sich am deutlichsten durch Berostungsunterschiede an den Eisenstäbe ausdrücken können.

Die Tabelle 44 gibt eine Übersicht des prozentuellen Anteils der Stababschnitte mit der Klassifizierungsstufe 0 zu den Herbstterminen wieder. Es wird deutlich, dass die Anzahl an Stababschnitten mit Patina, die ein Indiz für eine Belüftungsstörung darstellen, stets deutlich höher als im unbefahrenen Bestand ist. Das niederschlagsreichere Jahr 2014 ist besonders an dem erhöhten Aufkommen von Patina im Bestand und in der Mittelspur zu erkennen.

Bereich	Messtermin	3	5	6
Jahreszeit		Herbst '13	Herbst ´14	Herbst `15
		%	%	%
Bestand gesamt/ Referenz (3)	к)	0/ 0	11/ 11	3/4
Mittelspur gesamt/ Referenz (3)	x)	9/4	37/32	23/20
Fahrspur gesamt/Referenz (3)	x)	35/27	33/41	39/35

Dargestellt ist der prozentuale Anteile an Stababschnitten mit der Klassifizierungsstufe 0 (Patina, voraussichtlich O₂-Gehalt < 2mg/l bei Wassersättigung) an der Gesamtanzahl an Stababschnitten aller Gassen und nur für die Referenzgassen.

5.2.3.2 Belüftungssituation im unbefahrenen Bestand

Im unbefahrenen Bestand tritt eine verschlechterte Belüftungssituation ab einer Tiefe von ca. 9 cm bis ca. 20 cm uGOK auf (s. Abbildung 68). Im niederschlagsreichen Jahr 2014 sind die Störungen am intensivsten. Ihre maximale Ausprägung liegt hier in einer Tiefe von 18 cm uGOK bei 21% der gesamten Stababschnitte dieser Tiefenstufe. Insgesamt kann im Bestand aber von einer guten Bodenbelüf-

tungsituation ausgegangen werden, die eine der Grundvoraussetzungen für das Wurzelwachstum des Bestands darstellt.

Abbildung 68: Stababschnitte im Bestand die auf Belüftungsstörungen deuten (Patina, Klassifizierungsstufe 0)

Dargestellt ist die relative Häufigkeit der Eisenstababschnitte mit dem Erscheinungsbild Patina (Klassifizierungsstufe 0; voraussichtlich O_2 -Gehalt < 2mg/l bei Wassersättigung) zur Darstellung der Bodenverhältnisse mit reduzierenden Verhältnissen. Veranschaulicht sind die Bereiche des Bestands über die Herbstmesstermine 2013 – 2015 bis in einen Tiefenbereich von 27 cm uGOK. Die Expositionszeit der Eisenstäbe liegt für das Jahr 2013 bei 29 Tagen und für die Jahre 2014 und 2015 bei 31 Tagen.

5.2.3.3 Belüftungssituation in den Referenzgassen

Die Betrachtung der Referenzgassen (Abbildung 69) verdeutlicht die Existenz ausgeprägter Belüftungsstörungen in den Bereichen der Rückegassen. In allen drei Jahren steigen die Anteile der Stababschnitte in der Klassifizierungsstufe 0 in der Fahrspur in einem Tiefenbereich auf mindestens 50% an. Die Tiefenlage dieses Bereichs ist voraussichtlich abhängig von langfristigen Witterungsbedingungen und/ oder kurzfristigen Niederschlagsereignissen. Eine Regeneration der Gassenbereiche in Richtung des Bestands ist im Zeitraum 2013 bis 2015 nicht erkennbar.

In den Jahren 2013 und 2015 geht der hohe Anteil der Stababschnitte mit Patina mit zunehmender Tiefe ab ca. 20 cm uGOK wieder zurück. Nur im niederschlagsreichen Jahr 2014 nimmt die Belüftungsstörung mit zunehmendem Tiefengradienten weiter zu. Das gleiche Muster, jedoch weniger stark ausgeprägt, trifft auf die Mittelspur zu. Diese ähnelt in der Ausbildung der Patina-Segmente eher der Fahrspur als dem Bestand.

Abbildung 69: Stababschnitte in den Bereichen der Referenzgassen, die auf Belüftungsstörungen deuten (Patina, Klassifizierungsstufe 0)

Dargestellt ist die relative Häufigkeit der Eisenstababschnitte mit dem Erscheinungsbild Patina (Klassifizierungsstufe 0; voraussichtlich O_2 -Gehalt < 2mg/l bei Wassersättigung) zur Darstellung der Bodenverhältnisse mit reduzierenden Verhältnissen. Veranschaulicht sind die Bereiche Bestand, Mittelspur und Fahrspur über die Herbstmesstermine 2013 – 2015 der Referenzgassen (Gasse 26 und Gasse 48), bis in einen Tiefenbereich von 27 cm uGOK. Die Expositionszeit der Eisenstäbe liegt für das Jahr 2013 bei 29 Tagen und für die Jahre 2014 und 2015 bei 31 Tagen.

Um einen statistischen Vergleich durchführen zu können, wurden die Tiefenbereiche 0 – 9 cm und 12 – 27 cm zu jeweils einer Tiefenstufe zusammengefasst (Tabelle 45). Es zeigte sich, dass in der unteren Tiefenstufe (12 – 27 cm) Patina öfter in Erscheinung tritt, als in der oberen Tiefenstufe (0 – 9 cm). Die Unterschiede zwischen den drei Gassenbereichen waren ebenfalls im unteren Tiefenbereich am ausgeprägtesten (Tabelle 45). Im Niederschlagsreichen Jahr 2014 wurden keine signifikanten Unterschiede zwischen den beiden Tiefenstufen ermittelt. Ein signifikanter Unterschied zwischen den Jahren Konnte in den Tiefenstufen der Fahrspur und der Mittelspur, nicht aber im Bestand nachgewiesen werden.

Tabelle 45: Anteile der Eisenstabsegmente mit Patina im Ausbringungszeitraum September – Oktober 2013 – 2015 im Bestand (ctrl), Mittelspur (mid) und Fahrspur (track) von Rückegassen

				significance between
year	ctrl	mid	track	impact classes
2013	0%	0%	22%	p = 0.001
2014	6%	3%	11%	n.s.
2015	0%	21%	35%	p < 0.001
significance				
between years	n.s.	p = 0.002	p = 0.034	

% with Patina in 0-9 cm depth

% with Patina in 12-27 cm depth

				significance between
year	ctrl	mid	track	impact classes
2013	0%	6%	30%	p < 0.001
2014	13%	50%	60%	p < 0.001
2015	4%	19%	34%	p < 0.001
significance				
between years	n.s.	p < 0.001	p = 0.003	

Eine Korrelationsanalyse zeigte, dass das Erscheinen von Patina an den Eisenstäben unterhalb 12 cm signifikant mit den CO_2 -Konzentrationen in 6 cm Tiefe korrelierte (Abbildung 70).

A correlation analysis revealed, that the occurrence of patina at the rods below 12 cm soil depth was significantly correlated with [CO2] in 6 cm depth (figure 6). The same goes for the relation between patina frequency and matric potential in 6-10 cm soil depth (correlation coefficient patina ~ pF is -0.68 and -0.88 for rods in 12-18 cm and 21-27 cm respectively)). In 0-9 cm depth there was no consistent relation between patina frequency and [CO2) or matric potential (pF).

Abbildung 70: Plot der CO_2 -Konzentration der Bodenluft in 6 cm Tiefe zum prozentualen Anteil der Eisenstäbe mit Patina in drei Tiefenstufen. Eine signifikante Korrelation besteht in der Tiefenstufe 12 - 18 cm (r = 0,79) und 12 - 18 cm (r = 0,93).

5.2.3.4 Belüftungssituation in den Rückegassen mit verschiedenen Bodenbehandlungen zur Regenerationsförderung (2015)

Um die Aussagekraft der Eisenstäbe zu erhöhen, wurde im Jahr 2015 ein Schwerpunkt der Beobachtungen auf ausgewählte Maßnahmen gelegt. Es handelt sich hierbei um die Maßnahmenvarianten "flächig gekalkt (K)", "Lochstanzen + flächig gekalkt (S50K) und "Lochstanzen + Branntkalk direkt (S50Kd). In diesen varianten wurde die Anzahl der Eisenstäbe leicht erhöht, während andere Maßnahmen zunächst nicht weiter beobachtet wurden.

Die Abbildung 71 zeigt der Eisenstabauswertung der ausgewählten Varianten im Jahr 2015. Die einzelnen Varianten unterscheiden sich nicht signifikant von den Referenzgassen. Die Standardabweichungen der Wiederholungen liegen zwischen 10% (Referenzen) und 15% (S50Kd). Davon ausgehend, dass eine Regeneration des Bodens vorwiegend von Oben (GOK) nach Unten verläuft, ist zu vermerken, dass die Belüftungsverhältnisse in den oberen 6 cm der drei Maßnahmenvarianten geringere Patina-Anteile aufweisen, als die Referenzgassen. Die könnte auf eine beginnende Bodenregeneration, hervorgerufen durch die angewandten Maßnahmen, hindeuten.

Abbildung 71: % Stababschnitte in den Maßnahmenvarianten, die auf Belüftungsstörungen deuten

Dargestellt ist die relative Häufigkeit der Eisenstababschnitte mit dem Erscheinungsbild Patina (Klassifizierungsstufe 0; voraussichtlich O₂-Gehalt < 2mg/l bei Wassersättigung) zur Darstellung der Bodenverhältnisse mit reduzierenden Verhältnissen. Veranschaulicht sind die Bereiche der Fahrspuren im Herbsttermin 2016 der varianten Referenz (R), flächiges Kalken (K), Lochstanzen + flächiges Kalken (S50K) und Lochstanzen + Branntkalk direkt (S50Kd,) bis in einen Tiefenbereich von 27 cm uGOK. Die Expositionszeit der Eisenstäbe liegt für das Jahr 2016 bei 31 Tagen.

5.2.3.5 Diskussion zur Belüftungssituation

Die Ergebnisse der Eisenstabuntersuchungen verdeutlichen die Bedeutung der Bodenwasserspannung für die Redoxverhältnisse im Boden. Die ermittelte Wasserbilanz der Jahre 2013 bis 2015 spiegelt sich in den Beobachtungen zum Matrixpotential, den CO₂-Konzentrationen und den Eisenstäben mit Patina wider. Unsere Messungen ergaben, dass die CO₂-Konzentration in 6 cm Bodentiefe in Verbindung mit der Wasserbilanz kurzer Zeiträume, Rückschlüsse auf die Redox-Situation tieferer Bodenbereiche zulässt. Ab einem geringerem Matrixpotential von 2,5 (-300hPa) und/oder einer CO₂-Konzentration über 1 % steigt im Tiefenbereich 10 – 25 cm uGOK die Anzahl der Eisenstababschnitte mit Patina an.

Das Befahren des Bodens mit Maschinen, die einen hohen Druck auf den Boden ausüben, reduzieren die natürliche Dynamik der Vernässungs- und Austrocknungsprozesse des Bodens und verringern so sein Potential zur natürlichen Regeneration.

Obwohl die CO_2 -Konzentraton in den Fahrspuren auf nahezu ähnliche Konzentrationen wie im Bestand abfallen, zeigen die Ergebnisse der Eisenstabuntersuchungen keine Tendenz zu einer Verbesserung der Bodenluftverhältnisse innerhalb der ersten drei Untersuchungsjahre. Zu ähnlichen Ergebnissen kommt Bottinelli et al. (2014) in schluffigen Parabraunerden in denen die Regeneration des Bodengefüges in den ersten 2 – 3 Jahren auf den Oberboden beschränkt war und sich nicht in Tiefen unterhalb 7 cm fortsetzte. Aust et al. (1995) beobachtete starke Tiefeneffekte der Rostbildung auf Eisenstäben in Fahrspuren zwischen zerfahrenen, verschlämmten Fahrspuren und befahrenen Gassen ohne intensive Spurbildung. Goutal et al. (2013) beobachteten, dass die Regeneration des Oberbodens einhergeht mit ersten Prozessen der Bodenabtrocknung. In den hier vorliegenden Untersuchungen im Solling trocknete der Boden der Fahrspuren bereits im Spätsommer 2013 das erste Mal aus, welches voraussichtlich zu der unerwartet schnellen Abnahme der CO₂-Konzentration der Bodenluft führte.

5.2.4 Temperaturverlauf (2013 – 2014)

Der Temperaturverlauf in ca. 6 cm Bodentiefe in den Jahren 2013 und 2014 ist in Abbildung 72 dargestellt. Die Messung erfolgte mit den Watermark-Temperaturfühlern im Bestand.

Abbildung 72: Bodentemperatur in 6 cm Tiefe im Verlauf der Jahre 2013 und 2014 im unbefahrenen Bestand (Tagesmitelwerte zu WM-Sensoren) [Herkunftsdatei: WM_Bodentemperaturen _dm.xlsx]

Temperaturmessungen erfolgten auch parallel zur CO₂-Messung. Dabei wird die Temperatur im Gehäuse des Sensors gemessen, das mit ca. 1 cm Bodenabdeckung vergraben wurde. Wie Abbildung 73 zeigt, werden etwas höhere Maximaltemperaturen bei prinzipiell gleichem Verlauf wie bei den Watermark-Temperaturfühlern erreicht. In Abbildung 74 ist der Temperaturverlauf in der Fahrspur und im Mittelstreifen der Rückegassen mit dem im unbefahrenen Bestand verglichen. Es zeigt sich, dass von April bis August die Temperatur im oberen Boden in den Rückegassen (v.a. im Mittelstreifen) etwas höher als im Bestand war.

Abbildung 73 Temperatur im CO2-Sensorgehäuse (1-2 cm Bodenabdeckung) im unbefahrenen Bestand (Gesamt-Tagesmittelwerte 2014) [Quelldatei: Temperatur CO2 B_M_S_2014.xlsx]

Abbildung 74 Abweichung der Temperatur in den im Mittelstreifen und der Spur installierten CO2-Sensorgehäusen von denen im unbefahrenen Bestand (Gesamt-Tagesmittelwerte 2014)

Die Tagesschwankungen der im CO2-Sensorgehäuse gemessenen Bodentemperaturen sind in Abbildung 75 und Abbildung 76 exemplarisch für den März 2014 dargestellt. Diese Abbildungen stellen den Verlauf in einzelnen Sensoren dar während Abbildung 72 und Abbildung 73 Mittelwerte über alle Sensoren zeigen. Die Schwankungsbreite zwischen täglichem Maximum und Minimum beträgt bis zu 6°C.

Abbildung 75 Tagesmitteltemperatur im Sensorgehäuse Gasse 26 (R1) Bestand(schwarz), Mitte (grün), Spur(rot) vom 2.3. bis 31.3.2014 (dazu Stundenwerte aus dem Bestand) (X-Achse = Stunden)

Abbildung 76 Tagesmitteltemperatur im Sensorgehäuse Gasse 48 (R3) Bestand(schwarz), Mitte (grün), Spur(rot) vom 2.3. bis 31.3.2014 (dazu Stundenwerte aus dem Bestand) (X-Achse = Stunden).

5.2.5 Zusammenfassung und Schlussfolgerung zu den Daten der Messinstalationen

Das Matrixpotential des Bodenwassers spiegelt die Drainage des Porensystems wieder. Im Bestand wird es durch einen charakteristischen Jahresverlauf beschrieben. Im Winter füllen sich die Poren mit Wasser und werden im Verlauf des Jahres, bzw. während der Vegetationsperiode bis zum Herbst, nach und nach entleert. Im niederschlagsreichen Solling kommt es höchstens im Sommer zu geringen Wasserstresssituation für die Vegetation (Schipka 2002). Im Jahr 2014 wurde erst gegen Ende der Vegetationsperiode Feldkapazität erreicht. In den trockeneren Jahren 2013 und 2015 wurde das Bodenwasser auch den Mittelporen entzogen, so dass Matrixpotentiale zwischen -300 und -1000 hPa vorlagen. In den Fahrspuren war das Matrixpotential signifikant niedriger als im unbefahrenen Bestand. Dies spricht unter anderem für einen höheren Anteil an mit Wasser gefüllten Poren (Mittelporen) welches mit einem Verlust der Porosität, vorwiegend Grobporen, durch Bodenverdichtung einhergeht.

Obwohl die Mittelspur zwischen den beiden Fahrspuren weniger befahren und damit weniger verdichtet wurde, ähnelt sie in ihrem Matrixpotential eher dem der Fahrspur, als dem des Bestands. Dies kann durch eine Unterbrechung des Wasserentzugs durch den Baumbestand erklärt werden und wurde bereits von von Borchert et al (2015) gemessen, der den zeitlichen Wasserverlauf des Bodenwassergehalts in Fahrspuren in einem Fichtenbestand untersucht hat. Auch von Wilpert und Schäffer (2006) kamen zu der Überzeugung, dass die Durchwurzelungskapazität der Bäume in den Rückegassen nach Befahrung, zum Erliegen gekommen war.

Die CO₂-Konzentration im Boden wird reguliert durch die Bodenatmung und Diffusionsprozessen (Hashimoto und Komatsu 2006, Maier et al. 2011, Goutal et al. 2012a). Die Intensität der Bodenatmung hängt stark von der Bodentemperatur und zeigt ebenfalls einen typischen Verlauf während der Vegetationsphase. Die Diffusionsprozesse hingegen, hängen vorwiegend vom Grad der Wassersättigung des Bodenporensystems ab. In Übereinstimmung mit Welsch und Hornberger (2004) konnte dargestellt werden, dass der mit Wasser gefüllte Porenraum der Hauptfaktor für die CO₂-Konzentrationen im unbefahrenen Boden war. Im Bestand blieb die CO₂₋Konzentration der Bodenluft in 6 cm uGOK immer unterhalb von 1 %. Dieser Befund wurde auch in vielen anderen Studien beobachtet (Bekele et al. 2007, Certini et al. 2003, Ebeling et al. 2016, Gaertig et al. 2002, Goutal et al. 2012a). In den befahrenen Bereichen hingegen wurde die CO₂-Konzentration von 1 % regelmäßig überschritten. 1 % CO₂ in der Bodenluft in 5 – 7 cm uGOK kann somit als Grenzwert angenommen werden, der bei Überschreitung eine Störung der Bodenstruktur in Buchenwäldern signalisiert. Von CO₂-Konzentration > 1 % in ungestörten Böden wurde in Fichtenbeständen (Certini et al. 2003) und unter Grasland berichtet (Fletchard et al. 2007). Die Anwendung eines 1 % CO₂-Grenzwertes bei Einzelmessungen der Bodenluft (Ebeling et al. 2016), sollte auf der Zeitraum Mai bis Ende August beschränkt werden, um regionale Unterschiede und deren Auswirkung auf die CO2-Konzentration zu reduzieren.

Besonders im ersten Jahr nach der Befahrung stieg die CO₂-Konzentration innerhalb der Fahrspur signifikant an. Im Sommer 2013 war hier die Konzentration 10-mal höher als im Bestand. Auch nach drei Jahren überstieg die CO₂-Konzentrationen innerhalb der Fahrspur die des Bestands noch um das Doppelte. Allerdings lagen auch 90% der ausgelesenen Werte unterhalb der 1%-Schwelle. Auf einer Versuchsfläche in Nordost-Frankreich beobachteten Goutal et al. (2012a, 2013) eine Regeneration des Oberbodens (7 – 12 cm uGOK) in einem Zeitraum von 18 Monaten nach einer Befahrung. Als Ursache hierfür wurden vorrangig Schwellungs- und Schrumpfungsprozesse des Bodens angenommen (Goutal 2012b). Andererseits konnten von Wilpert und Schäffer (2006) sowie Ebeling et al. (2016) belegen, dass die Regeneration der Bodenstruktur, in Untersuchungen zu räumlich und zeitlich divergierenden Versuchsflächen, erst 10 Jahre nach einer Befahrung begann. Labelle und Jaeger (2011) fanden in New Brunswick (Kanada) nach 5 Jahren keine Anzeichen einer Regeneration der Lagerungsdichte des Bodens (auch nicht nach 10 Jahren, laut mündl. Aussage).

Die Ergebnisse der Eisenstabuntersuchungen demonstrieren die Bedeutung des Wasserhaushalts auf die Belüftungssituation des Bodens. Der Verlauf der kurzzeitigen Wasserbilanz im Jahr 2013 und 2015 findet sich in den Daten des Matrixpotentials, der CO₂-Konzentration und der Häufigkeit des Erscheinungsbildes Patina an den Eisenstäben wieder. Es wurde herausgefunden, dass die CO₂-Konzentration in 6 cm uGOK in Verbindung mit einer kurzzeitigen Wasserbilanz einer Aussage über die Belüftungssituation in tieferen Bodenhorizonten erlaubt. Ab einem Matrixpotential < 300hPa und/ oder CO₂-Konzentration > 1% stieg der Anteil an Patina in 10 – 25 cm uGOK an.

Die Befahrung des Bodens mit Maschinen, die einen hohen Bodendruck ausüben, reduzieren somit deutlich die natürliche Austrocknungs- und Wiederbefeuchtungsdynamik des Bodens und beschränken die spontane Regeneration der Bodenstruktur.

Abschließend kann gesagt werden, dass einer der wichtigsten Prozesse zur Förderung der natürlichen Bodenregeneration, der Entzug von Wasser aus den verdichteten Bodenbereichen darstellt. Hier ist der Entzug von Wasser durch ein intaktes Wurzelsystem der Bäume besonders wichtig. Dieser Prozess scheint jedoch in den beobachteten Rückegassen sowohl in den Fahrspuren, wie auch in der Mittelspur zu fehlen.

Um eine Bodenregeneration zu fördern, sollte somit der Schutz der Baumwurzeln an oberster Stelle stehen. Zusätzliche Maßnahmen das Niederschlagswasser von den Gassen abzuleiten ist ebenfalls sinnvoll, um den Regenerationsprozess durch Schwellungs- und Schrumpfungsprozesse zu fördern.

5.3 Ergebnisse der Bodenuntersuchungen

5.3.1 Ergebnisse der Bohrstockproben

Wiedergegeben werden die Daten zum gravimetrischen Wassergehalt, den pH-Werten und Kohlenstoffgehalten aus den 2013 und 2014 durchgeführten Bohrstockbeprobungen aller Gassen.

5.3.1.1 Ergebnisse der gravimetrischen Wassergehaltsbestimmung

5.3.1.1.1 Gravimetrische Wassergehalte im Bestand

Wie die gleitende 7-Tage-Wasserbilanz erkennen lässt (Abbildung 31) erfolgte die Bohrstockbeprobung jeweils im Spätsommer nach einer Phase geringerer Niederschläge und mit beginnenden höheren Niederschlägen. Dies spiegelt auch die Tabelle 46 wider, in welcher der gravimetrische Wassergehalt des Bestands der Jahre 2013 und 2014 dargestellt wird. Während sich der Oberboden langsam wiederbefeuchtet, herrschen im Unterboden noch deutlich trockenere Bodenverhältnisse. Das Niederschlagsreichere Jahr 2014 ist ebenfalls erkennbar. Die Fahr- und Mittelspuren der Rückengassen weisen hierbei deutlich höhere Wassergehalte (Masse-%) als der Bestand auf, müssen aber in Relation zu unterschiedlichen Gehalten an organischer Substanz und Trockenrohdichten gesehen werden.

Tiefe (cm)	2013	STABW	2014	STABW	Mittel 2013/ 2014	STABW
0-5	22	5	40	3	31	4
10-20	14	3	26	1	20	2
30-40	12	2	21	1	17	2

Tabelle 46: Gravimetrischer Wassergehalt im Bestand (2013 und 2014)

Dargestellt ist der gemittelte gravimetrische Wassergehalt (Masse-%) der im Bestand beprobten drei Referenzgassen Rückegassen aus den Jahren 2013 und 2014 in drei Tiefenstufen.

5.3.1.1.2 Gravimetrischer Wassergehalt in den Referenzgassen

Tabelle 47 gibt den Wassergehalt der Referenzgassen wieder, getrennt nach Gassenbereich und Untersuchungsjahr. Deutlich erkennbar sind die höheren Wassergehalte der Fahr- und Mittelspur gegenüber dem Bestand. Im trockeneren Jahr 2013 waren diese Unterschiede wesentlich ausgeprägter als im Jahr 2014. Die Tabelle 48 gibt die gemittelten Werte der beiden Jahre 2013 und 2014 wieder.

Tabelle 47 Mittelwert und Standardabweichung des gravimetrischen Wassergehalts [Gew.-%] in den Referenzgassen und dem angrenzenden Bestand

Datum	Tiefe.cm	Bestand	Mitte	Spur		
				'	1	
	Mw	Stabw	Mw	Stabw	Mw	Stabw
----------------	----------------	-------	-------	-------	-------	-------
03.09.2013 0-5	21,81	5,84	31,19	6,24	30,80	7,61
10-20	14,43	2,91	18,78	2,83	20,55	4,75
30-40	12,25	1,91	16,12	8,39	15,27	2,44
17.10.2014 0-5	39,96	3,78	43,02	10,47	41,75	8,45
10-20	25 <i>,</i> 68	1,64	31,13	9,95	22,61	3,42
30-40	20,89	0,89	22,39	2,16	20,13	3,52

Tabelle 48: Gravimetrischer Wassergehalt (Masse-%) Referenzgasse, Fahr- und Mittelspur (Mittelwerte aus 2013 und 2014)

Tiefe (cm)	Fahrspur	STABW	Mittelspur	STABW
0-5	36	7	37	8
10-20	22	4	25	6
30-40	18	3	19	2

5.3.1.1.1 Gravimetrische Wassergehalte in den Fahrspuren der Maßnahmenvarianten

Die Tabelle 49 gibt die gemittelten Werte des gravimetrischen Wassergehalts der beiden Jahre 2013 und 2014 innerhalb der Maßnahmenvarianten der Fahrspur und Mittelspur wieder. Abbildung 77 zeigt die Messergebnisse der Rückegassen als Boxplot.

Tabelle 49: Gravimetrischer Wassergehalt der Fahrspuren der Maßnahmenvarianten (Mittel aus2013 und 2014)

Tiefe (cm)	Fahrspur	STABW	Mittelspur	STABW
0-5	34	9	41	8
10-20	24	4	24	4
30-40	20	4	19	4

Abbildung 77: Volumetrischer Wassergehalt der Fahrspur und des Mittelstreifens der Rückegassen mit und ohne Maßnahmen. Zusammenfassung der Bohrstockmesskampagnen 2013 und 2014.

5.3.1.2 Ergebnis der pH-Wertanalyse

Tabelle 50 gibt eine Übersicht über die Mittelwerte der beiden Pürckhauermesskampagnen der Jahre 2013 und 2014 für die Gassenbereiche Bestand, Mittelspur und Fahrspur in drei Untersuchungstiefen.

Datum der	Tiefe.cm	Bestand		Mitte		Spur	
Probenahme		Mw	Stabw	Mw	Stabw	Mw	Stabw
03.09.2013	0-5	3,36	0,41	3,32	0,27	3,75	0,16
	10-20	3,84	0,26	3,82	0,21	3,90	0,15
	30-40	4,14	0,10	4,10	0,12	4,10	0,11
17.10.2014	0-5	3,34	0,08	3,76	0,38	3,95	0,27
	10-20	3,74	0,20	3,92	0,24	4,20	0,13
	30-40	4,10	0,20	4,20	0,18	4,22	0,13

Tabelle 50 pH-Werte im Boden der Referenzgassen in den Bereichen unbefahrener	Bestand,	Mit-
telstreifen und Fahrspur		

5.3.1.2.1 pH-Werte im Bestand

Die pH-Werte des unbefahrenen Bestands liegen in den Jahren 2013 und 2014 im Oberboden (0-5 cm) bei 3,4 (STABW 0,2; n=11), steigen im Bereich 10-20 cm auf pH 3,8 (STABW 0,2; n=12) und im Unterboden (30-40cm) auf Werte um 4,1 (STABW 0,1; n=12) an (**Fehler! Verweisquelle konnte nicht gefunden werden.**). Der Boden der Versuchsfläche befindet sich damit im chemischen Aluminiumund Eisenpufferbereich (Ulrich et al. 1979) mit geringer Basensättigung und hohen Gehalten an austauschbarem Aluminium und Protonen (NW-FVA 2008).

5.3.1.2.2 pH-Werte in den drei Referenzgassen

Die pH-Werte der Mittelspuren innerhalb der Referenzgassen liegen 2014 im Oberboden bei 3,8 (STABW 0,3; n=6) und steigen im Unterboden auf Werte um 4,2 (STABW 0,2; n=6) an. Damit liegt im Oberboden ein pH-Anstieg um 0,4 gegenüber dem unbefahrenen Bestand und ein Anstieg um 0,5 gegenüber der Vorjahresmessung vor (2013 Mittelspur; pH 3,3; STABW 0,2; n=6). Der Unterboden weist einen konstanten pH-Wert von 4,2 auf.

Die Varianzanalyse der pH-Messwerte aus den Referenzgassen zeigt keine signifikanten Unterschiede zwischen den drei Referenzgassen und keinen Effekt der Probenahmeposition (Sektor) am Hang. Es ist ein schwacher Einfluss des Probenahmejahres auf die Messergebnisse gegeben. In der Gasse (Mitte und Spur) sind die pH-Werte von 2013 zu 2014 angestiegen.

Eine Durchmischung des Oberbodens mit dem weniger saurem Unterboden und der Humusauflage ist in der Mittelspur vorwiegend nicht gegeben. Eine Ursache für den pH-Anstieg kann in der aufwachsenden, krautigen Biomasse und ihrer Funktion als Basenpumpe liegen. Während im Bestand keine Krautschicht vorhanden ist, weist die Mittelspur unterschiedlich intensiven Bewuchs auf. Der Biomasseaufwuchs ist in allen Segmenten gegenüber dem Vorjahr erhöht. Eine Korrelation zwischen pH-Wert und dem erhobenen Biomasseindex liegt für die drei Referenzgassen im Oberboden zwischen 0,6 und 1,0 (n=12) und weist damit einen mittleren bis starken Zusammenhang auf.

Die pH-Werte der Fahrspuren innerhalb der Referenzgassen liegen 2014 im Oberboden bei 4,0 (STABW 0,3; n=6) und steigen im Unterboden auf Werte um 4,2 (STABW 0,1; n=6) an. Damit liegt im Oberboden ein pH-Anstieg um 0,6 gegenüber dem unbefahrenen Bestand und ein Anstieg um 0,3 gegenüber der Vorjahresmessung vor (2013 Fahrspur; pH 3,7; STABW 0,2; n=6). Der Unterboden weist in 2013 und 2014 einen konstanten pH-Wert von ca. 4,2 auf (STABW 0,1, n=12).

Tabelle 51: Übersicht der pH-Wert Entwicklung der drei Referenzgassen der Jahre 2013 und

2014.

	Tiefenbezug	Bestand	STABW	Mittelspur (Refe-	STABW	Fahrspur (Refe-	STABW
	(cm uGOK)	(Referenzgassen)		renzgassen)		renzgassen)	
2013	0-5	3,4	0,4	3,3	0,2	3,7	0,2
	30-40	4,2	0,1	4,1	0,1	4,1	0,1
2014	0-5	3,3	0,1	3,8	0,3	4,0	0,3
	30-40	4,1	0,2	4,2	0,2	4,2	0,1

Jeder Messwert entspricht n=6. pH gemessen in CaCl₂.

5.3.1.2.3 pH-Werte in den Fahrspuren der Maßnahmenvarianten

Die pH-Werte in den Fahrspuren variieren deutlich, je nachdem, ob eine Kalkungsvariante zur Anwendung gekommen ist oder nicht. Die Abbildung 78 gibt einen Überblick über die pH-Wert-Veränderung innerhalb der Fahrspuren.

pH-Differenz 2014-2013, Tiefe 0-5 cm Spur

Kalk

Ref

S20

Abbildung 78: pH-Differenz der Fahrspuren vom Jahre 2014 zu 2013.

5.3.1.2.4 Varianten ohne Kalkungsmaßnahmen

Im Jahr der Befahrung (2013) variieren die Varianten ohne Kalkungsmaßnahmen (S50, S20 und S50P) innerhalb der Fahrspur im Oberboden in einem pH-Bereich von 3,4 bis 4,4. Hier führte eine Durchmischung mit der ehemaligen organischen Auflage und mit dem Unterboden voraussichtlich zu dem pH-Anstieg gegenüber dem pH-Wert im Bestand von pH 3,4.

Im Folgejahr (2014) ist im Oberboden, ähnlich wie im Bereich der Mittelspur, ein pH-Anstieg von durchschnittlich 0,2 pH (STABW 0,3) erfolgt. Die Werte reichen von pH 3,7 bis 4,6. Da der pH-Anstieg innerhalb der Wiederholungsgassen variiert, kann er keiner der Maßnahmen zugeordnet werden.

Im Unterboden ist der pH-Wert im Jahr 2014 im Durchschnitt um 0,15 gestiegen und liegt damit im Bereich der Standardabweichungen von 2013 und 2014.

5.3.1.2.5 Varianten mit Kalkungsmaßnahmen

Die oberflächige Ausbringung von Kalk zur Erhöhung der pH-Werte des Bodens im Rahmen einer Waldkalkung, wirkt sich häufig nur sehr langsam auf tiefere Bodenhorizonte aus. Im Folgenden wird daher betrachtet, ob mit den verschiedenen Kalkungsvarianten der Gassen eine pH-Wert-Anhebung auch in tieferen Bodenbereichen erzielt werden kann?

Im ersten Jahr nach der Kalkung (2014) zeigen alle flächig gekalkten Varianten im Oberboden einen erwarteten pH-Sprung von 3,4 (Bestand) auf 6,0 - 6,3 (s. Tabelle 52). Die Variante der dicht mit Branntkalk verfüllten Perforationslöcher (S50Kd) weist einen geringer ausfallenden pH-Sprung auf (2014: pH 4,8). Im Bereich 10-20cm uGOK weist die Variante S50Kd hingegen mit einem pH von 5,2 den höchsten Wert auf. Alle flächig gekalkten Varianten liegen in diesem Tiefenbereich im Mittel bei pH 4,4 (STABW 0,2). Die Perforationsvarianten ohne Einsaat (S50K, S20K) erreichen hier höhere pH-Werte, als die die Variante mit Einsaat.

Im Unterboden ist gegenüber dem Bestand ein pH-Anstieg von durchschnittlich 0,2 auf pH 4,3 (STABW 0,02) gegeben. In den Varianten S50KP (mit Einsaat) und S50Kd sind die pH-Werte im Oberboden des Oberhangs höher als am Unterhang, während alle anderen Kalkungsvarianten einen höheren pH-Wert am Unterhang aufweisen (nicht dargestellt). Dies deutet darauf hin, dass sowohl der verfüllte Branntkalk wie auch die krautige Aussaat den Kalk verstärkt vor einen Verlagerung schützen.

Jahr	Tiefenbezug (cm uGOK)	S20K	S50K	К	S50KP	S50Kd
	0-5	5,7	6,1	6,3	6,3	4,0
	STABW	0,9	0,1	0,1	0,1	0,1
2012	10-20	4,2	3,9	4,1	3,9	4,0
2015	STABW	0,2	0,1	0,3	0,3	0,1
	30-40	4,6	4,0	4,1	4,0	4,1
	STABW	0,7	0,1	0,1	0,1	0,1
	0-5	6,0	6,3	6,0	6,2	4,8
	STABW	0,4	0,1	0,2	0,4	0,6
2014	10-20	4,5	4,6	4,3	4,3	5,2
	STABW	0,2	0,6	0,1	0,2	0,8
	30-40	4,3	4,3	4,3	4,4	4,2
	STABW	0,1	0,1	0,1	0,2	0,2

Tabelle 52: Übersicht der pH-Wert Entwicklung der Kalkungsvarianten der Jahre 2013 und 2014.

Mittelwerte aus zwei Gassen. Jeder Messwert entspricht n=4. pH gemessen in CaCl₂.

5.3.1.2.6 Beprobung einzelner Perforationslöcher (2015)

Im Rahmen der Untersuchungen der Durchwurzelungsintensität im Bereich der Perforationslöcher (s. Kapitel 4.3.2.7), wurde an den Profilwänden jeder Perforationslochebene Bodenproben zur pH-Wert Bestimmung entnommen. In den Gassen G25 (S20 K), G33 (S20), G46 (S50 KP)und G49 (S50 Kd) wurden folgende Mischproben erstellt:

- 1. Bereich 3 8 cm links neben dem Perforationsloch
- 2. Bereich 3 8 cm unterhalb des Perforationslochs
- 3. Material direkt aus dem Perforationsloch

Die Auswertung der pH-Werte im Nahbereich der Perforationslöcher ergibt einen moderaten pH-Anstieg der flächig gekalkten Varianten im Unterboden von maximal 0,24. Im Bereich der Branntkalkvariante wirkt sich der pH-Anstieg deutlicher aus. Hier wurde ein Anstieg des pH-Werts im Unterboden um ca. 0,78 gemessen. Weiter Untersuchungen zu den pH-Werten im Bereich der Perforationslöcher aus dem Jahr 2016 finden sich in Sparrer (2017).

Tabelle 53: pH-Werte	im E	Bereich der	Perforationslöcher
----------------------	------	-------------	--------------------

lahr	Tiefe ca.	Entnahme-	G	25	G	33	G	46	G	49
Jani	[cm uGOK)	bereich	S20 K S20		S5	0 KP	S50) Kd		
2013	10 cm	Ausgangswert aus Pürckhauerbeprobung	3,89							
2013	35 cm	Ausgangswert aus Pürckhauerbeprobung	4,09							
2015	10 cm	<u>Mischprobe</u> ca. 5 cm links von SL/ SL	4,13	6,89	4,02	4,02	4,12	6,45	4,20	12,13
2015	25 cm	ca. 5 cm unterhalb SL		4,13		4,04		4,06		4,87

Gegenübergestellt sind die pH-Werte der Referenzgassen aus dem Jahr 2013 der Pürckhauerbeprobung zu den Mischproben aus der Perforationslochuntersuchung (Erfassung der Wurzelintensität) aus dem Jahr 2015. Mit SL = Perforationsloch, K = flächig gekalkt; KP = flächig gekalkt + Einsaat; Kd = Branntkalksäule; S20 = Lochabstand 20 cm. S50 = Lochabstand 50 cm. n = fünf Perforationslöcher pro Gasse.

5.3.1.2.7 Diskussion

Die Auswirkungen des ausgebrachten Kalks in tiefere Bodenhorizonte sind unter anderem Abhängig von der ausgebrachten Kalkmenge, der Häufigkeit der Kalkausbringung, der Einwirkzeit und dem Ausgangsgestein (Guckland et al., 2010). Weiterhin sind die Mächtigkeit der organischen Auflage, die Humusform (Marschner, 1995) sowie der Grobporenanteil und die Bioturbation (Lamparski, 1985) von wesentlicher Bedeutung.

Während bei *Feger et al.* (2000) die Humusauflage einer Versuchsfläche im Schwarzwald sieben Jahre nach einer Kalkung eine pH-Erhöhung von 2,9 (\pm 0,1) auf 4,0 (\pm 0,8) aufweist, findet im Oberboden (0-10 cm) lediglich eine Erhöhung von pH 3,2 (\pm 0,2) auf 3,3 (\pm 0,2) statt. Zu ähnlichen Beobachtungen kommen *Krauss* (1997) und *Nebe* et al. (1997).

Die Rückegassen im Solling wurden direkt nach ihrer Erstbefahrung gekalkt. Zu diesem Zeitpunkt war die ehemals bestehende organische Auflage entweder in den mineralischen Oberboden eingearbeitet oder als Wulst an den Rand der Fahrspur gedrängt worden. Der ausgebrachte Kalk kam somit im Bereich der Fahrspur in direkten Kontakt mit dem Mineralboden. Eine Adsorption des CaCO₃ durch die Humusauflage, wie sie im Bestand und häufig auch in der Mittelspur gegeben ist, blieb somit aus. Hierdurch lässt sich der schnelle pH-Anstieg im Oberboden erklären.

Der pH-Anstieg in dem Bodenbereich 10-20 cm kann durch Sickerwasser innerhalb von Grobporen, durch Schrumpfungsrisse oder durch die angelegten Perforationslöcher hervorgerufen worden sein. Um hier den Hauptwirkmechanismus zu erfassen sollten weitere Bodenansprachen vor Ort durchgeführt werden.

Offene Fragen:

- Ist die pH-Erhöhung in den Fahr- und Mittelspuren durch Durchmischung und/oder Basenpumpe entstanden?
- Wie hoch ist der pH-Wert der org. Substanz
- Schutz vor Kalkverlagerung durch Branntkalkvariante und Aussaat weiter beobachten.
- Kalkbedarf sollte der Basensättigung und den weiteren Standortbedingungen angepasst werden (siehe Kalkungsmerkblatt NW-FVA)
- Welche Perforationsdichte ist die effektivste: S50, S20, Effekt gegen Aufwand.

5.3.1.2.8 Schlussfolgerung

Voraussichtlich ist durch eine Kalkung in Verbindung mit Lochstanzen, besonders in verdichtungsempfindlichen Böden mit geringem Grobporenanteil, eine schnelle pH-Werterhöhung in tiefere Bodenhorizonte möglich. In Verbindung mit einer Grüneinsaat oder mit Branntkalk verfüllten Perforationslöchern, lässt sich besonders an geneigten Standorten eine Abschwemmung des Kalks durch Niederschläge mindern.

5.3.1.3 Ergebnisse der Kohlenstoffanalyse

5.3.1.3.1 Kohlenstoffgehalte im Bestand (2014)

Tabelle 54 zeigt, dass die organischen Kohlenstoffgehalte (C_{org}) im Bestand im Oberboden im Mittel aller Beprobungen bei 8,6 % liegen. Bis in eine Tiefe von 40 cm uGOK sinken sie dann auf ca. 1 % ab.

Tiefe (cm)	C _{org} %	STABW
0-5	8,6	2,1
10-20	2,8	0,7
30-40	1,1	0,3

Tabelle 54: Organische Kohlenstoffgehalte im Bestand (2014)

5.3.1.3.2 Kohlenstoffgehalte der Referenzgassen (2014)

Tabelle 55 zeigt, dass die organischen Kohlenstoffgehalte in den Fahrspuren der Referenzgassen im Oberboden im Mittel der Beprobungen aus dem Jahr 2014 bei 5,3 % liegen. Bis in eine Tiefe von 40 cm uGOK sinken sie dann, wie im Bestand, auf ca. 1 % ab. Die Gehalte im Oberboden des Mittelstreifens liegen mit 6,9 % zwischen denen der Fahrspur und des Bestands.

Die Varianzanalyse der C_{org}-Messwerte in den Referenzgassen zeigt keine signifikanten Unterschiede zwischen den drei Referenzgassen und keinen Effekt der Probenahmeposition (Sektoren). Am deutlichsten ist der Unterschied zwischen den drei Tiefenstufen. Signifikante Unterschiede sind auch zwischen Bestand, Mittelstreifen und Rückegassen und zwischen den beiden Beprobungsjahren aufgetreten (s. Tabelle 56). Eine Überprüfung auf Korrelationen ergab keinen Zusammenhang zwischen dem Kohlenstoffgehalt und dem BMI, der Fahrspurtiefe, dem Wulstvolumen oder dem grav. Wassergehalt.

	Fah	rspur	Mittelspur		
Tiefe (cm)	C _{org} %	STABW	C _{org} %	STABW	
0-5	5,3	2,4	6,9	1,9	
10-20	1,9	0,9	3,2	2,2	
30-40	0,9	0,4	1,1	0,2	

Tabelle 55: Organische Kohlenstoffgehalte der Referenzgassen (2014)

Datum	Tiefe.cm	Bestand		Mitte		Spur	
		Mw	Stabw	Mw	Stabw	Mw	Stabw
03.09.2013	0-5	5,28	1,27	6,40	2,65	4,17	1,21
	10-20	1,91	0,57	1,88	0,53	1,74	0,64
	30-40	0,86	0,10	0,82	0,22	0,64	0,11
17.10.2014	0-5	8,65	2,15	6,93	2,04	5,26	2,66
	10-20	2,84	0,78	3,22	2,39	1,19	0,96
	30-40	1,12	0,30	1,05	0,27	0,90	0,43

Tabelle 56: Übersicht der Organische Kohlenstoffgehalte der Referenzgassen (2013 – 2014)

5.3.1.3.3 Organische Kohlenstoffgehalte in den Gassen mit Maßnahmen zur Regenerationsförderung

Abbildung 80 zeigt, dass die organischen Kohlenstoffgehalte im Oberboden der Gassen der Maßnahmenvarianten, auch innerhalb der Wiederholungsgassen, stark differieren. Ab einer Tiefe von 20cm uGOK verhalten sich die C_{org} –Gehalte ähnlich und gleichen denen des Bestands.

Abbildung 80: Organische Kohlenstoffgehalte der in den Gassen mit Maßnahmen

5.3.1.3.4 Zusammenfassung/ offene Fragen

• Die Fahrspuren der Referenzgassen haben im Oberboden geringere C_{org} -Gehalte als der Oberboden im Bestand \rightarrow Verdrängung in Wulst?

- Die C_{org}-Gehalte der Mittelspuren der Referenzgassen liegen im Tiefenbereich 0-20 cm zwischen denen des Bestands und denen der Fahrspuren.
- Es bestehen keine Korrelationen von BMI, Fahrspurtiefe, Wulstvolumen und grav. Wassergehalt zum C_{org}-Gehalt.
- Es bestehen keine Unterschiede zwischen Ober- und Unterhang
- Die C_{org} –Gehalte, auch gleicher Varianten, differieren stark im Oberboden.
- C_{org} –Gehalte ab 20cm uGOK verhalten sich ähnlich
- Nehmen die C_{org}-Gehalte mit zunehmender Steigung ab?

5.3.2 Ergebnisse der Stechzylinderuntersuchungen

5.3.2.1 Trockenrohdichte der Gassenbereiche (2013)

Die Trockenrohdichte (TRD) des Oberbodens (5-10 cm) und des Unterbodens (30-40 cm) stellt sich heterogen dar. Ein Bestimmtheitsmaß von 0,3 der Trendfunktion spiegelt dies wieder (nicht dargestellt). Hier fließen voraussichtlich die unterschiedliche Hangneigung, Steingehalt und Wurzelarmierung der Einzelgassen mit ein. Wie erwartet weisen die Fahrspuren mit Maximalwerten von 1,5 g/cm³ im Oberboden und 1,7 g/cm³ im Unterboden die höchsten TRD an (Tabelle 57). Sehr geringe TRD kann durch die Vermengung mit organischer Substanz begründet werden. Der Unterboden weist im Durchschnitt eine um 0,2 g/cm³ höhere TRD als der Oberboden auf. Für die Fahrspuren ergibt sich durch ihre Erstbefahrung eine durchschnittliche Erhöhung um 0,1 g/cm³.

Gassenbereich/ TRD [g/cm ³]	Oberboden	Unterboden
	Mittel (max./ min.)	Mittel (max./ min.)
Bestand	1,1 (1,4/0,7)	1,3 (1,6/ 1,0)
Mittelspur	1,2 (1,4/0,7)	1,3 (1,6/ 1,0)
Spur	1,2 (1,5 / 0,7)	1,4 (1,7 / 1,2)

Tabelle 57: Übersicht der durchschnittlichen Trockenrohdichte innerhalb der Gassenbereiche.

Dargestellt sind die gemittelten Werte der Trockenrohdichte (TRD) in den Tiefenbereichen 0,5cm (Oberboden) und 30-40cm (Unterboden) der drei Bereiche einer Rückegasse. Pro Bereich n = 20; ermittelt durch die Entnahme von 100cm^3 Stechzylindern. Tabelle 58 gibt die im Jahr 2013 ermittelten Trockenrohdichten (TRD) der Gassenbereiche in Relation zum Bestand wider. Im Mittel ist die TRD im Oberboden innerhalb der Gassenbereiche geringfügig höher als im Bestand. Im Unterboden ist die erhöhte TRD in Bezug zum Bestand deutlicher ausgeprägt als im Oberboden. Die größere Auswirkung der Bodenverdichtung auf den Unterboden als auf den Oberboden, wie sie in Kapitel 5.1.7 beschrieben wird, wird hier bestätigt.

Tabelle 58: Trockenrohdichten der Gassen

5-10 cm/ Gasse	28	27	26	25	24	23	31	32	33	34	35	36	37	38	45	46	47	48	49	Mittel (g/cm³)
Bestand g/cm ³	0,84	1,13		1,30	1,11		1,08			1,21	1,02			1,23			1,06	1,24	1,12	1,12
Bestand	100%	100%		100%	100%		100%			100%	100%			100%			100%	100%	100%	
Spur	99%	93%		106%	124%		113%			100%	145%			80%			120%	110%	114%	1,23
Mitte	83%	84%		96%	120%		98%			97%	135%			93%			114%	106%	103%	1,15
30-40 cm/ Gasse	28	27	26	25	24	23	31	32	33	34	35	36	37	38	45	46	47	48	49	Mittel (g/cm³)
Bestand g/cm ³	1,05	1,30		1,47	1,24		1,22			1,37	1,29			1,32			1,33	1,29	1,29	1,29
Bestand	100%	100%		100%	100%		100%			100%	100%			100%			100%	100%	100%	
Spur	125%	95%		102%	130%		112%			99%	115%			103%			125%	114%	112%	1,44
Mitte	103%	98%		100%	124%		85%			92%	112%			97%			98%	104%	101%	1.30

Dargestellt ist die Trockenrohdichte der Rückegassen aus dem Jahr 2013 in Relation zur Trockenrohdicht im Bestand.

5.3.2.2 Atterberg'sche Grenzen

Tabelle 59 gibt die Ergebnisse Untersuchungen zu den Atterberg´schen Grenzen, der Gassen G 26, G 38 und G 48, jeweils ober- und unterhalb Bereiche mit Maßnahmenanwendungen, wieder. Es fällt auf, dass sowohl der volumetrische Wassergehalt wie auch der Porenanteil des Bodens vom Oberhang zum Unterhang, abnehmen.

Probe	Wassergehalt bei Probenahme (M %)	Wassergehalt bei Probenahme (V %)	Porenanteil (%)	Konsistenz	TRD (g/cm3)	Korndichte	Schrumpfung (%)	Bodenbenennung DIN 18196
26 oben	28,4	46,4	52,1	weich	1,384	2,58	7,6	TM mittelplastische Tone
26 unten	34,1	41,4	51,1	weich	1,213	2,48	2,4	TA ausgeprägt plastische Tone
38 oben	32,2	36,8	55,2	weich	1,141	2,55	5,1	TM/TA
38 unten	23,1	34,9	41,1	steif	1,513	2,57	4,7	TM/TA
48 oben	25,2	36,9	41	halbfest	1,463	2,48	5,2	ТА
48 unten	21,4	33,3	39,6	steif	1,553	2,57	4,5	ТА
		Volumetrischer Wassergehalt nimmt nach unten ab.	Porenanteil nimmt nach unten ab					

Tabelle 59: Bestimmung der Atterberg`schen Grenzen

5.4 Vergleich der Maßnahmenvarianten

Im Folgenden werden die Auswirkungen der Maßnahmenvarianten zur Regeneration von Bodenfunktionen in Rückegassen auf die Parameter Matrixpotential, CO₂, Belüftungssituation und Entwicklung der Zeigerpflanzen erläutert.

5.4.1 Matrixpotential (Watermark-Sensoren)

In den Untersuchungsjahren 2013 bis 2015 waren Watermark-Sensoren in 6-10 cm Tiefe in der Fahrspur und im Mittelstreifen der Rückegassen installiert. Die Saugspannung konnte allerdings nicht in allen Maßnahmenvarianten in allen Jahren in der gleichen Intensität gemessen werden. Aus den Verlaufsbeobachtungen der Saugspannung im Bestand und in den unbehandelten Referenzvarianten ergab sich, dass die stärkste Veränderung der Saugspannung im Spätsommer erfolgt (Fründ und Averdiek 2016). Für den Vergleich der Maßnahmenvarianten über alle drei Untersuchungsjahre wurden deshalb die Messwerte aus dem Zeitraum 30. Juli bis 10. September ausgewählt (Kalenderwochen 31-36). In Tabelle 60 sind für diesen Zeitraum die Medianwerte der Wasserspannung jedes Sensors in hPa sowie der Anteil der Nässe anzeigenden Messwerte mit < 3 cbar ("wet", entspricht > -30 hPa) und der Trockenheit anzeigenden Messwerte mit > 30 cbar ("dry", entspricht < -300 hPa) dargestellt. Tabelle 60 zeigt die Messwerte in den Fahrspuren. Die Codierung der ersten Spalte der Tabelle zeigt die Versuchsvariante, die Sensorposition in der Rückegasse (S oder M), die Nummer der Rückegasse und die Nummer des Sensors (Beispiel: "Ref S G26 W12" = Versuchsvariante Referenz, Sensorposition Fahrspur, Rückegasse 26, Sensornummer W12). Gleiche Sensornummer in verschiedenen Jahren bedeutet, dass der Sensor von Jahr zu Jahr ohne Neuinstallation an der gleichen Stelle belassen wurde.

Die verschiedenen Sensoren in einer Rückegasse zeigten zum Teil sehr unterschiedliche Matrixpotentiale an. Das ist z.B. in Gasse 35 (Maßnahmenvariante S50P) bei den Sensoren W40 und W41 der Fall. In Gasse 49 (Maßnahmenvariante S50Kd) unterscheiden sich Sensor W75 und Sensor W76 stark. Unterschiede zwischen den beiden Gassen mit gleicher Maßnahmenvariante fallen bei Variante S20 auf (Gasse 27 im Jahr 2014 eher trocken, Gasse 33 im gleichen Zeitraum eher nass). Insgesamt lassen sich dennoch Hinweise auf Unterschiede zwischen verschiedenen Maßnahmenvarianten finden, die in Abbildung 81 und Abbildung 82 verdeutlicht werden.

Tabelle 60 Median des Matrixpotentials (hPa) und Anteil der Nässe bzw. Trockenheit anzeigenden

Sensor		2013			2014			2015	
	median	wet	dry	median	wet	dry	median	wet	dry
Ref S G26 W12				-130	0,0%	0,0%	-730	0,0%	82,7%
Ref S G26 W13				-170	0,0%	0,0%	-520	0,0%	71,4%
Ref S G34 W37				-180	0,0%	1,9%			
Ref S G34 W38				-80	0,0%	0,0%			
Ref S G48 M22	-310	2,9%	54,4%						
Ref S G48 M23	-250	0,0%	1,9%						
Ref S G48 M24	-190	0,0%	12,6%						
Ref S G48 W72				-40	5,4%	0,0%	-190	0,0%	16,9%
Ref S G48 W73				-130	0,0%	0,0%	-305	0,0%	50,0%
Ref S	-250,0	1,0%	23,0%	-121,7	0,9%	0,3%	-436,3	0,0%	55,3%
Kalk S G31 W26				-100	4,4%	0,0%	-160	0,0%	0,0%
Kalk S G31 W27				-30	26,2%	0,0%	-30	27,0%	0,0%

Messwerte aller Watermark-Sensoren in Fahrspuren im Zeitraum 30. 07-10.09 in den Jahren 2013 bis 2015 (wet = > -30 hPa, dry = < -300 hPa)

Sensor		2013			2014			2015	
	median	wet	dry	median	wet	dry	median	wet	dry
Kalk S G45 W58				-130	0,0%	0,0%	-180	0,0%	18,7%
Kalk S G45 W59				-100	0,0%	0,0%	-180	0,0%	7,9%
Kalk S				-90,0	7,7%	0,0%	-137,5	6,7%	6,6%
000 0 007 11/00					4.00/	10 70/			
S20 S G27 W09				-260	1,0%	13,7%			
S20 S G27 W 10				-250	0,0%	17,3%	100	C E0/	0.00/
520 5 G33 W33				-10	00,0% 16 3%	0,0%	-130	0,0%	0,0%
<u>S20 S</u>				-137 5	<u>34 0%</u>	7.7%	-150.0	3.3%	0,0%
020 0				107,0	01,070	1,1 /0	100,0	0,070	0,070
S20K S G25 W16				-340	0,0%	64,4%			
S20K S G25 W17				-200	0,0%	2,4%			
S20K S G36 W44				-170	0,0%	0,0%			
S20K S G36 W45				-20	57,1%	0,0%			
S20K S				-182,5	14,3%	16,7%			
S50 S G28 W01				-120	0,0%	0,0%			
S50 S G28 W02				-140	0,0%	0,0%			
S50 S G28 W03	150	0.00/	0.0%	-160	0,0%	0,0%			
S50 S G37 M15	-100	0,0%	0,0%						
S50 S G37 M17	-390	0,0%	70.9%						
S50 S G37 W47	-350	14.9%	67.2%	-60	0.0%	0.0%			
S50 S G37 W48	-230	4,5%	0.0%	-10	96,2%	0.0%			
S50 S	-268,0	3,9%	27,6%	-98,0	19,2%	0,0%			
			·						
S50K S G23 W23				-230	0,0%	0,0%	-230	0,0%	19,8%
S50K S G23 W24				-170	0,0%	0,0%	-320	0,0%	56,3%
S50K S G47 W64				-20	100,0%	0,0%	-210	0,0%	18,1%
S50K S G47 W65				-100	0,0%	0,0%	-580	0,0%	92,1%
S50K S G47 W66				-20	77,4%	0,0%	-170	0,0%	3,3%
S50K S				-108,0	35,5%	0,0%	-302,0	0,0%	37,9%
S50Kd S G24 W19	-225	0,0%	27,3%	-530	0,0%	95,6%	-2290	0,0%	100,0%
S50Kd S G24 W20	-230	0,0%	27,3%	-490	0,0%	86,4%	-845	0,0%	96,2%
S50Kd S G49 W75				-210	1,4%	0,6%	-1105	0,0%	93,8%
S50Kd S G49 W76				-30	36,0%	0,0%	-295	0,0%	47,8%
S50Kd S	-227,5	0,0%	27,3%	-315,0	9,3%	45,7%	-1133,8	0,0%	84,5%
	050	0.00/	0.00/						
S50KP S G32 M08	-250	0,0%	0,0%						
S50KP S G32 MU9	-190	0,0%	0,7%						
S50KP S G32 W30	-110	0,0 %	0,078	-60	0.0%	0.0%	-320	0.0%	54 2%
S50KP S G32 W31				-100	0.0%	0.0%	-390	0,0%	88.5%
S50KP S G46 W61				-20	88.4%	0.0%	-340	0.4%	60.9%
S50KP S G46 W62				-30	43,6%	0,0%	-530	0,0%	91,3%
S50KP S	-183,3	0,0%	2,2%	-52,5	33,0%	0,0%	-395,0	0,1%	73,7%
				000	0.00/	0.00/			
5007 5 G35 W40				-230	0,0%	3,6%			
550F 5 635 W41				-50	1,7% 0.0%	0,0%			
S50P S G38 W51				-50	0.6%	0.0%			
S50P S G38 W52				-30	1.0%	0.0%			
S50P S				-80,0	0,7%	0,7%			

Abbildung 81 Medianwert des Matrixpotentials (pF) in 3 Jahren der Watermarksensoren in Fahrspuren in verschiedenen Maßnahmenvarianten während 30.07-10.09. (KW 31-36). Fehlerbalken sind Standardabweichung zwischen den Sensoren an einer Maßnahmenvariante.

Im Vergleich der Matrixpotential-Medianwerte von Fahrspuren, die mit verschiedenen Maßnahmen zur Regenerationsförderung behandelt wurden, zeigt sich der klimatische Unterschied zwischen den drei Untersuchungsjahren (Abbildung 81). Das Jahr 2014 hatte die meisten Niederschläge. Die Wasserbilanz im Beobachtungszeitraum war im Jahr 2015 am stärksten defizitär. In Abbildung 81 ist zu erkennen, dass bei oberflächlicher Kalkung (Variante "Kalk") der Boden in der Fahrspur weniger stark abtrocknete als in der unbehandelten Referenz. In der Variante S50Kd (Bodenperforation mit Branntkalkfüllung) war der Boden in allen drei Untersuchungsjahren deutlich trockener als in der Referenz. Die übrigen Maßnahmenvarianten lassen keinen deutlichen Unterschied zur Referenz erkennen.

Abbildung 82 Anteil des Matrixpotentials > 30 cbar ("dry") in 3 Jahren der Watermarksensoren in Fahrspuren während 30.07-10.09. (KW 31-36). Balken im Minusbereich: keine Messwerte aus diesem Jahr. Fehlerbalken sind Standardabweichung zwischen den Sensoren an einer Maßnahmenvariante.

Die Unterschiede zwischen den Maßnahmenvarianten treten deutlicher hervor, wenn die Häufigkeit von Messwerten betrachtet wird, die eine Austrocknung des Bodens anzeigen (Matrixpotential < -300 hPa) (Abbildung 82).

Im Mittelstreifen der Rückegassen sind keine deutlichen Unterschiede zwischen den Maßnahmenvarianten zu erkennen.

Abbildung Medianwert des Matrixpotentials (pF) in 3 Jahren der Watermarksensoren im Mittelstreifen in verschiedenen Maßnahmenvarianten während 30.07-10.09. (KW 31-36).

Abbildung 83 Anteil des Matrixpotentials > 30 cbar ("dry") in 3 Jahren in Watermarksensoren in Mittelstreifen während 30.07-10.09. (KW 31-36). Balken im Minusbereich: keine Messwerte aus diesem Jahr.

5.4.2 CO₂-Konzentration der Bodenluft

In Tabelle 61 sind die in den Jahren 2013 bis 2015 gemessenen CO_2 -Gehalte der Luft in 6 cm Bodentiefe dokumentiert. Bei den Sensoren der Variante S50Kd (Bodenperforation + Branntkalk) fallen besonders große Unterschiede zwischen verschiedenen Messpositionen in der Fahrspur auf. Im Jahr 2015 war die CO_2 -Konzentration der Bodenluft an zwei Positionen ähnlich dem unbefahrenen Bestand (0,2 % und 0,7 % CO_2), an den übrigen vier Messpositionen wurden jedoch für das Jahr 2015 sehr hohe CO_2 -Konzentrationen über 1 % CO_2 gemessen bis hin zum Maximalwert 6,8 % CO_2 .

1 % alle	er Sen	isoren in Fanrspurei	n im Zeiti	raum 26	. 0410.0	J9 in der	n Janren	2013 DIS
Vari-			20	13	20	14	20	15
ante	Pos	Gasse, Segment	Median	> 1%	Median	> 1%	Median	> 1%
Ref	S	Ref S G26 Seg1					0,2	0,0%
Ref	S	Ref S G26 Seg2	1,2	61,2%	1,1	53,9%		
Ref	S	Ref S G26 Seg3					0,4	1,8%
Ref	S	Ref S G26 Seg4					1,0	51,3%
Ref	S	Ref S G48 Seg1					0,6	1,9%
Ref	S	Ref S G48 Seg2	3,1	94,8%	1,2	61,8%		
Ref	S	Ref S G48 Seg3					0,7	6,1%
Ref	S	Ref S G48 Seg4					0,2	0,0%
Ref		Mittelwert	2,1	78,0%	1,1	57,9%	0,5	10,2%
	~							60 - 0(
Kalk	S	Kalk S G31 Seg1				/	1,3	63,7%
Kalk	S	Kalk S G31 Seg2	2,4	99,7%	1,4	93,2%		44.00/
Kalk	S	Kalk S G31 Seg3					0,9	41,8%
Kalk	S	Kalk S G45 Seg1		00.00/		7.00/	0,2	0,5%
Kalk	S	Kalk S G45 Seg2	2,2	99,0%	0,7	7,8%		
Kalk	S	Kalk S G45 Seg3					0,4	44,7%
Kalk	5	Kalk S G45 Seg4					0,7	26,2%
Kalk		Mittelwert	2,3	99,4%	1,0	50,5%	0,7	35,4%
S20	S	S20 S G27 Seg2	0,5	0,0%	0,5	0,0%		
S20	S	S20 S G33 Seg2	3,6	99,2%	1,2	65,6%		
S20		Mittelwert	2,1	49,6%	0,9	32,8%		
S20K	S	S20K S G25 Seg2	1,0	52,9%	1,2	72,5%		
S20K	S	S20K S G36 Seg2	5,5	99,9%	1,0	44,5%		
S20K		Mittelwert	3,2	76,4%	1,1	58,5%		
550	c	SEO S C 28 Sog 2	26	00 00/	0.0	7 10/		
220	с С	550 5 G27 Sog2	5,0 2 1	90,0 <i>%</i>	0,0	0,1/0		
530	3	Mittalwort	3,1	90,9%	2,4	92,270		
330		witterwelt	5,3	J7,3%	1,0	47,0%		
S50K	S	S50K S G23 Seg1					0,7	13,7%
S50K	S	S50K S G23 Seg2	0,3	16,8%	0,8	13,4%		

Tabelle 61 Median der CO ₂ -Konzentration in 6 cm Bodentiefe und Anteil der Messwerte mit [CO ₂] >
1 % aller Sensoren in Fahrspuren im Zeitraum 26. 0410.09 in den Jahren 2013 bis 2015

Vari-			20	13	20	14	20	15
ante	Pos	Gasse, Segment	Median	> 1%	Median	> 1%	Median	> 1%
S50K	S	S50K S G23 Seg3					1,2	81,5%
S50K	S	S50K S G23 Seg4					2,0	88,6%
S50K	S	S50K S G47 Seg1					0,8	10,7%
S50K	S	S50K S G47 Seg2	0,6	2,8%	0,9	33,3%		
S50K	S	S50K S G47 Seg3					0,7	13,0%
S50K	S	S50K S G47 Seg4					1,1	52,5%
S50K		Mittelwert	0,5	9,8%	0,8	23,3%	1,1	43,4%
S50Kd	S	S50Kd S G24 Seg1					6,8	66,8%
S50Kd	S	S50Kd S G24 Seg2	0,7	39,2%	1,1	57,3%		
S50Kd	S	S50Kd S G24 Seg3					1,4	77,1%
S50Kd	S	S50Kd S G24 Seg4					0,2	0,0%
S50Kd	S	S50Kd S G49 Seg1					0,5	0,0%
S50Kd	S	S50Kd S G49 Seg2	4,6	99,4%	0,7	10,0%		
S50Kd	S	S50Kd S G49 Seg3					1,5	71,9%
S50Kd	S	S50Kd S G49 Seg4					1,7	95,5%
S50Kd		Mittelwert	2,7	69,3%	0,9	33,6%	2,0	51,9%
S50KP	S	S50KP S G32 Seg2	1,5	76,3%	2,0	95,8%		
S50KP	S	S50KP S G46 Seg1					0,7	31,9%
S50KP	S	S50KP S G46 Seg2	1,4	91,6%	3,1	99,0%		
S50KP	S	S50KP S G46 Seg3					1,9	85,9%
S50KP	S	S50KP S G46 Seg4					1,0	53,2%
S50KP		Mittelwert	1,5	84,0%	2,5	97,4%	1,2	57,0%
S50P	S	S50P S G35 Seg2	5,1	99,4%	0,4	0,0%		
S50P	S	S50P S G38 Seg2	3,4	99,7%	1,4	60,2%		
S50P		Mittelwert	4,2	99,6%	0,9	30,1%		

Abbildung 84 Mittlere Medianwerte der CO₂-Konzentration in 6 cm Bodentiefe in den Fahrspuren der Maßnahmenvarianten im Zeitraum 26.4.-10.9.. Fehlerbalken zeigen die Standardabweichung zwischen verschiedenen Sensorpositionen

Bei allen Maßnahmenvarianten mit Ausnahme von S50K und S50KP ist ein Rückgang der sehr hohen CO_2 -Konzentrationen des Jahres 2013 zu niedrigeren Werten in 2014 zu erkennen. Die CO_2 -Konzentration in der unbehandelten Referenz ist in der Tendenz niedriger als in den Fahrspuren, wo Regeneration fördernde Maßnahmen durchgeführt wurden. Dies gilt besonders für das dritte Jahr (2015) nach der Befahrung.

Abbildung 85 Mittlerer Anteil der stündlichen CO2-Messwerte in 6 cm Bodentiefe je Sensorposition in den Fahrspuren der Maßnahmenvarianten im Zeitraum 26.4.-10.9. Fehlerbalken zeigen die Standardabweichungen zwischen verschiedenen Sensorpositionen

Bei der Häufigkeit von Bodenluft-Messwerten mit > 1 % CO_2 tritt die Varianz zwischen verschiedenen Messpositionen in einer Maßnahmenvariante noch deutlicher hervor als bei den Medianwerten, wie die großen Streuungsbalken zeigen (Abbildung 86Abbildung 86. Auch die generell höheren CO_2 -

Konzentrationen der Bodenluft in den gekalkten und/oder bodenperforierten Fahrspuren bleiben erkennbar.

Vari-			20	13	20	14	2015		
ante	Pos	Gasse, Segment	Median	>1%	Median	>1%	Median	>1%	
Ref	М	Ref M G26 Seg1					0,2	0,0%	
Ref	М	Ref M G26 Seg2	0,3	25,3%	0,4	0,0%			
Ref	М	Ref M G26 Seg3					0,2	0,0%	
Ref	М	Ref M G26 Seg4					0,3	0,0%	
Ref	М	Ref M G48 Seg1					0,7	29,4%	
Ref	М	Ref M G48 Seg2	1,3	82,6%	1,9	93,9%			
Ref	М	Ref M G48 Seg3					0,4	7,1%	
Ref	М	Ref M G48 Seg4					0,4	17,2%	
Ref	М	Mittelwert	0,8	53,9%	1,2	46,9%	0,4	8,9%	
Kalk	Μ	Kalk M G31 Seg2	0,6	10,7%	0,6	0,0%			
Kalk	Μ	Kalk M G45 Seg2	1,1	63,5%	0,9	40,9%			
Kalk		Mittelwert	0,9	37,1%	0,7	20,5%			
S20K	Μ	S20K M G25 Seg2	0,5	0,2%	0,3	0,0%			
S20K	Μ	S20K M G36 Seg2	1,3	56,1%	1,4	88,6%			
S20K		Mittelwert	0,9	28,1%	0,9	44,3%			
S50K	Μ	S50K M G23 Seg2	0,5	35,5%	0,4	0,0%			
S50K	Μ	S50K M G47 Seg2	0,9	25,1%	2,8	99,2%			
S50K		Mittelwert	0,7	30,3%	1,6	49,6%			
S50Kd	Μ	S50Kd M G24 Seg2	0,3	0,3%	1,2	79,0%			
S50Kd	Μ	S50Kd M G49 Seg2	0,5	22,7%	0,3	0,0%			
S50Kd		Mittelwert	0,4	11,5%	0,8	39,5%			
S50KP	М	S50KP M G32 Seg2	0,2	0,0%	0,4	0,0%			
S50KP	М	S50KP M G46 Seg2	2,8	88,3%	0,5	3,8%			
S50KP		Mittelwert	1,5	44,1%	0,4	1,9%			

Tabelle 62 Median der CO2-Konzentration in 6 cm Bodentiefe und Anteil der Messwerte mit [CO2]> 1 % aller Sensoren in Mittelstreifen im Zeitraum 26. 04.-10.09 in den Jahren 2013 bis 2015

Abbildung 86 Mittlere Medianwerte der CO₂-Konzentration in 6 cm Bodentiefe in den Mittelstreifen der Maßnahmenvarianten im Zeitraum 26.4.-10.9.. Fehlerbalken zeigen die Standardabweichung zwischen verschiedenen Sensorpositionen

Bei den nur in der Referenz und den gekalkten Maßnahmenvarianten gemessenen CO₂-Konzentrationen im Mittelstreifen der Rückegasse traten deutlich niedrigere Werte auf, als in den Fahrspuren. Die CO₂-Konzentrationen sind aber höher unbefahrenen Bestand. Der im Bestand eigentlich nie überschrittene Schwellenwert von 1 % CO₂ wird überwiegend in mehr als 10 % der Messungen überschritten (Abbildung 87). Die größere Bodenfeuchte im Jahr 2014 (verglichen mit 2013) bewirkt im Mittelstreifen ähnlich wie im unbefahrenen Bestand eine Steigerung der CO₂-Konzentration der Bodenluft in 6 cm Tiefe. In der Fahrspur überwog die Bodenregeneration offensichtlich den Bodenfeuchteffekt.

Abbildung 87 Mittlerer Anteil der stündlichen CO₂-Messwerte in 6 cm Bodentiefe je Sensorposition in den Mittelstreifen der Maßnahmenvarianten im Zeitraum 26.4.-10.9. Fehlerbalken zeigen die Standardabweichungen zwischen verschiedenen Sensorpositionen

5.4.3 Eisenstäbe als Indikatoren der Bodenbelüftung

Das Auftreten von Patina an den jeweils im September/Oktober der Jahre 2013 bis 2015 bis in 24 cm Bodentiefe installierten Eisenstäben wurde für den Vergleich der Maßnahmenvarianten in zwei Tiefenstufen ausgewertet. Tiefenstufe 0-9 cm umfasst die drei Stabsegmente 0-3, 3-6 und 6-9 cm. Tiefenstufe 9-24 cm umfasst die fünf 3 cm-Stabsegmente 9-12, 12-15, 15-18, 18-21 und 21-24 cm. Das Auftreten von Patina wird als Hinweis auf reduktive Verhältnisse gewertet (Owens 2008).

Vari-	Anteil Segmen	te mit Patina	bis 9 cm	Anteil Segmente mit Patina 9 bis 24 cm					
ante	2013	2014	2015	2013	2014	2015			
Ref	78%	89%	67%	52%	75%	61%			
Kalk	67%	96%	63%	65%	78%	66%			
S20	38%	88%		33%	80%				
S20K	100%	92%		68%	80%				
S50	75%	75%		35%	68%				
S50K	75%	88%	54%	70%	80%	63%			
S50Kd	75%	83%	48%	58%	68%	66%			
S50KP	88%	83%		75%	70%				
S50P	83%	88%		73%	80%				

Tabelle63Anteilder3cm-EisenstabsegmentemitPatinainFahrspurenimZeitraumSeptember/Oktober (6 Wochen) in den Jahren 2013 bis 2015

Wie Tabelle 63 zeigt, sind in der Fahrspur zwischen den verschiedenen Maßnahmenvarianten keine bedeutsamen Unterschiede festzustellen. Im dritten Jahr nach der Befahrung (2015) deutet sich eine verglichen zur Referenz etwas bessere Belüftungssituation bei den Varianten S50K und S50Kd in 0-9 cm Tiefe an. Es ist aber nur der Unterschied zwischen Ref und S50Kd schwach signifikant (Fisher Exact Test, p zweiseitig = 0,0983).

Tabelle 64 Anteil der 3 cm-Eisenstabsegmente mit Patina im Mittelstreifen im Zeitraum September/Oktober (6 Wochen) in den Jahren 2013 bis 2015

Vari-	Anteil Segmer	nte mit Patina	bis 9 cm	Anteil Segmente mit Patina 9 bis 24 cm						
ante	2013	2014	2015	2013	2014	2015				
Ref	19%	64%	33%	17%	63%	31%				
Kalk	42%	75%	56%	45%	70%	56%				
S20	21%	88%		28%	78%					
S20K	21%	88%		20%	80%					
S50	13%	33%		5%	45%					
S50K	46%	79%	33%	28%	70%	53%				
S50Kd	38%	42%	46%	30%	70%	39%				
S50KP	29%	58%		30%	60%					
S50P	29%	54%		28%	70%					

.

.

Im Mittelstreifen der Rückegassen ist der Anteil der reduktive Verhältnisse anzeigenden Stabsegmente mit Patina generell geringer als in den Fahrspuren (Tabelle 64). Das feuchtere Wetter im Jahr 2014 spiegelt sich in einem höheren Anteil von Stabsegmenten mit Patina in 2014 wieder. Drei Jahre nach der Befahrung (2015) deutet sich ein Unterschied zwischen den flächig gekalkten Varianten (Kalk, S50K) und denen ohne flächige Kalkausbringung an. Der bei der Variante S50Kd in die Perforationslöcher gefüllte Branntkalk war lokal in den Bodenperforationslöchern der Fahrspur verblieben. Eine pH-Wert Steigerung konnte nur bis ca. 5 mm neben der Branntkalksäule beobachtet werden. Die mit Bodenperforation und Branntkalkfüllung behandelten Rückegassen zeigten auch bis 2015 nicht das in den Kalkvarianten typische Aufkommen von Brennnesseln (*Urtica dioica*). Es erscheint deshalb gerechtfertigt, die Mittelspur der Variante S50Kd als ungekalkt zu betrachten. Die Prüfung auf Variantenunterschied in der 2x4 Kontingenztafel mit allen 2015 untersuchten Maßnahmenvarianten ergibt im Fisher Exact Test keine Signifikanz, aber ein 2x2-Vergleich "flächige Kalkung" gegen "keine flächige Kalkung" wird im Fisher Exact Test als signifikant ausgewiesen (p zweiseitig < 0,01).

5.4.4 Entwicklung der krautigen Biomasse in den Rückegassen

Die Ermittlung der krautigen Biomasse, als Indiz für bodenregenerierende Wurzelaktivitäten, erfolgte in den Jahren 2013 bis 2016 im Zeitraum Juli bzw. September/ Oktober in allen Versuchsgassen. Pro Gassensegment (4 x 12,5 m pro Gasse) wurde hierfür ein repräsentativer Bewuchs von ca. 1 x 0,5m ausgewählt auf welchem in vertikaler Richtung diejenige Pflanzenhöhe bestimmt wurde, in der die Biomasse der Krautschicht ihre maximale Dichte aufwies (Abbildung 18). In horizontaler Richtung wurde der Bodenbedeckungsgrad der Pflanzen visuelle erfasst und als % -Wert angegeben. Aus dem Produkt des vertikalen und des horizontalen Pflanzenparameters ergibt sich der Biomasseindex (BMI), welcher die Intensität des Pflanzenbewuch-

Abbildung 88: Darstellung der maximalen Biomassendichte

ses widerspiegelt (1 BMI \approx 0,065 g Trockenmasse/kg Frischmasse). Die ermittelte Biomasse innerhalb der Fahrspur ist in Tabelle 65 für die Jahre 2013 bis 2016 wiedergegeben. Dargestellt ist der BMI für jedes Gassensegment der 19 Versuchsgassen. Die Abbildung 89 fasst die Entwicklung der Biomasse nach Versuchsvarianten zusammen.

In September 2013 (8-9 Monate nach dem Befahren) ist die Vegetationsmenge gegenüber den Folgejahren am geringsten ausgebildet und sehr heterogen verteilt: Stellen nahezu ohne Vegetation und solche mit kräftiger krautiger Vegetation kommen in derselben Rückegasse vor (s. Tabelle 65). Hierbei spielt der Lichteinfall eine untergeordnete Rolle (Pearson-Korrelationskoeffizient = 0,44). Bis zum Jahr 2016 gleichen sich die vier Segmente innerhalb einer Gasse in ihrem Biomasseaufwuchs tendenziell an. Besonders im ersten Jahr nach der Befahrung steigt auf allen Gassen die Biomasse sprunghaft an.

Den höchsten BMI gegenüber den Referenzgassen (Ø BMI 820) weisen im Zeitraum 2014 bis 2016 die Varianten K (Ø BMI 1690), S50P (Ø BMI 1590) und S50K (Ø BMI 1270) auf. Signifikant erhöht ist in diesem Zeitraum jedoch nur der BMI der Variante S50K (p zweiseitig = 0,01). Den geringsten BMI weisen die ausschließlich perforierten Varianten S20 (ca. BMI 590) und S50 (Ø BMI 430) auf. Insgesamt besteht auch innerhalb der Maßnahmenvarianten eine hohe Heterogenität (s. Standardabweichung Abbildung 89).

Der Bewuchs auf den Mittelgassen (nicht dargestellt) fällt im Vergleich zur Fahrspur geringer aber mit einer größeren Varianz aus. Auffällig ist, dass der BMI einschließlich bis zum Jahr zu 2016 bei allen Gassen, außer denen mit Ansaat, stetig zunimmt. Varianten mit flächiger Kalkung, aber auch Kd weisen tendenziell einen höheren BMI als die Referenzgassen und die Varianten mit ausschließlicher Bodenperforation auf. S50Kd ist dabei die einzige Variante, deren BMI gegenüber den Referenzgassen im Betrachtungszeitraum 2014 bis 2016 signifikant erhöht ist (p zweiseitig, < 0,024).

Tabelle 65: Medianwerte des Biomasseindex (BMI) über 4 Jahre in den Fahrspuren der Versuchsgassen. Wiedergegeben ist der Biomasseindex (BMI) in den Jahren 2013 bis 2016 in den jeweils vier Gassensegmenten einer Fahrspur. Die Codierung der ersten Spalte der Tabelle zeigt die Versuchsvariante, die Position in der Rückegasse (S = Fahrspur), die Nummer der Rückegasse und das Segment der Gasse (1 = 0 - 12,5 m; 2 = 12,5 - 25 m usw.)

Gassensegment	2013	2014	2015	2016
Ref S G26 1	18	900	1820	150
Ref S G26 2	10	600	720	150
Ref S G26 3	6	450	480	150
Ref S G26 4	4	300	1105	150
Ref S G34 1	330	2000	1800	1000
Ref S G34 2	105	1470	1000	700
Ref S G34 3	12	3000	1620	750
Ref S G34 4	48	2100	1320	2400
Ref S G48 1	70	550	160	1000
Ref S G48 2	30	175	300	225
Ref S G48 3	45	150	360	100
Ref S G48 4	8	75	100	10
Mittelwert Ref S	57	981	899	565
Kalk S G31 1	160	700	600	250
Kalk S G31 2	200	950	1250	1375
Kalk S G31 3	80	1425	1080	1050
Kalk S G31 4	20	2100	3500	1400
Kalk S G45 1	1800	1500	2250	2700
Kalk S G45 2	250	300	1600	2250
Kalk S G45 3	2000	900	2000	2800
Kalk S G45 4	2000	1500	2550	4500
Mittelwert Kalk S	8134	1172	1854	2041
S20 S G27 1	1040	380	1020	450
S20 S G27 2	8	15	5	8
S20 S G27 3	8	240	260	30
S20 S G27 4	3	340	240	150
S20 S G33 1	150	1500	3610	1400
S20 S G33 2	150	800	1200	200
S20 S G33 3	42	560	525	150
S20 S G33 4	48	560	490	75
Mittelwert S20 S	181	549	919	308
S20K S G25 1	16	900	910	1575
S20K S G25 2	18	900	490	75
S20K S G25 3	30	2000	180	150

S20K S G25 4	200	2000	1800	500
S20K S G36 1	135	2000	900	700
S20K S G36 2	780	2000	1080	3500
S20K S G36 3	350	1500	1080	2100
S20K S G36 4	60	1425	850	1750
Mittelwert S20 S	199	1591	911	1294
S50 S G28 1	15	10	24	15
S50 S G28 2	20	75	60	60
S50 S G28 3	4	30	60	30
S50 S G28 4	25	1200	40	225
S50 S G37 1	40	420	750	1250
S50 S G37 2	450	420	750	800
S50 S G37 3	200	900	800	700
S50 S G37 4	40	900	450	225
Mittelwert S50 S	99	494	367	413
S50K S G23 1	960	2000	1650	1800
S50K S G23 2	48	720	1700	375
S50K S G23 3	15	2000	960	1650
S50K S G23 4	5	1500	1430	1200
S50K S G47 1	900	2000	2800	1250
S50K S G47 2	100	720	1300	800
S50K S G47 3	200	1500	1950	1125
S50K S G47 4	375	1500	750	2100
Mittelwert S50K S	325	1493	1568	1288
S50Kd S G24 1	770	2500	2160	1750
S50Kd S G24 2	14	1500	1140	1000
S50Kd S G24 3	15	700	850	150
S50Kd S G24 4	80	850	1250	200
S50Kd S G49 1	40	280	750	875
S50Kd S G49 2	150	280	1400	1250
S50Kd S G49 3	10	1425	2250	1400
S50Kd S G49 4	100	760	1200	400
Mittelwert S50Kd S	147	1037	1375	878
S50KP S G32 1	1300	1500	600	300
S50KP S G32 2	1000	1500	760	100
S50KP S G32 3	1000	1500	400	100
S50KP S G32 4	600	1500	760	350
S50KP S G46 1	0	1350	1020	700
S50KP S G46 2	0	1200	750	500
S50KP S G46 3	0	1200	800	200
S50KP S G46 4	0	1425	700	100
Mittelwert S50KP S	488	1397	724	294
				_• •

Mittelwert S50P S	1033	2050	1028	1688
S50P S G38 4	950	300	360	NA
S50P S G38 3	800	600	360	NA
S50P S G38 2	850	2000	750	NA
S50P S G38 1	1600	3000	1900	NA
S50P S G35 4	720	500	400	400
S50P S G35 3	1400	2000	950	1350
S50P S G35 2	990	4000	1700	1800

Abbildung 89: Medianwerte des Biomasseindex (BMI) über 4 Jahre in den Fahrspuren der Maßnahmenvarianten. Fehlerbalken sind Standardabweichung zwischen den Maßnahmenwiederholungen.

5.4.5 Entwicklung der auf eine befahrungsbedingte Störung der Bodenstruktur hinweisenden Zeigerpflanzen in den Rückegassen

Zusammen mit dem Aufwuchs an krautiger Biomasse (BMI) innerhalb der Versuchsgassen, wurde der Anteil an Zeigerpflanzen (BMI_z) aufgenommen, der auf eine befahrungsbedingte Strukturstörung hindeutet (erhöhte Verdichtung und Vernässung). Es wurde geschätzt, wie hoch der Anteil an Zeigerpflanzen an der gesamten Krautschicht-Biomasse (BMI) ist. BMI_z gibt also den Prozentanteil der Zeigerpflanzen an der oberirdischenKrautschicht-Biomasse an. Eine Auflistung der Zeigerpflanzen findet sich in Clemens et al. (2008) und im Merkblatt Bodenschutz im Wald des Kanton Luzern (2013). Von 2014 bis 1016 setzten sich die Zeigerpflanzen für Strukturstörung auf den Versuchsgassen vorwiegend aus den Arten Juncus effusus (Binse) und Carex remota (Winkelsegge) zusammen. 2013 waren Zeigerpflanzen noch nicht Bestandteil der Datenerhebung (s. Tabelle 66 und Abbildung 90).

Obwohl das Jahr 2014 die höheren Niederschläge aufweist, wurde der höchste Anteil an Zeigerpflanzen in der Fahrspur im Jahr 2015 ermittelt (BMI_z der Referenz ca. 64). Im Jahr 2014 und 2016 liegen der BMI_z der Referenzgassen auf einem ähnlichen Niveau (BMI_z 21 bzw. 17). Im Variantenvergleich weist die Variante S50KP über alle drei Jahre den niedrigsten BMI_z auf. Anscheinend ist die Ansaat in Verbindung mit der Kalkung sehr konkurrenzstark und drängt die Zeigerpflanzenarten zurück. Die Schlussfolgerung über eine geringere Bodenverdichtung bei dieser Variante ist daher nicht gerechtfertigt.

Einen signifikant geringeren BMI_z gegenüber den Referenzgassen weist die Variante S20 (BMI_z 8,4, p zweiseitig = 0,026) auf, die besonders im letzten Untersuchungsjahr durch einen um 50% geringeren BMI_z gegenüber den Referenzen auffällt. Die Variante S50 zeigt im BMI_z-starkem Jahr 2015 einen um ca. 2/3 geringeren BMI_z-Anteil auf. Beide reinen Lochstanzvarianten besitzen 2016 die geringsten BMI_z. Ob es sich hierbei um einen generellen Trend handelt, kann nach den drei Betrachtungsjahren noch nicht abschließend bestätigt werden.

Die Mittelspur (nicht dargestellt) weist im Vergleich zur Fahrspur niedrigere Anteile an Zeigerpflanzen auf und verdeutlicht so, die geringer ausgeprägte Bodenverdichtung der Mittelspur. Die reine Kalk-Variante spiegelt den bereits in Kapitel 5.2.1.5.2 erwähnten Trend zur Vernässung dieser Variante wieder.

Tabelle 66: Anteil der Verdichtungszeiger am Biomasseindex

Im Jahr 2013 wurden keine Daten über die Verdichtungszeiger erhoben.

Gassensegmente	2014	2015	2016	
Kalk S G31 1	9	32	6	
Kalk S G31 2	20	50	10	
Kalk S G31 3	15	80	10	
Kalk S G31 4	0	65	10	
Kalk S G45 1	20	70	60	
Kalk S G45 2	62	5	80	
Kalk S G45 3	28	70	50	
Kalk S G45 4	28	40	70	
Mittelwert K S	23	52	37	
Ref S G26 1	22	82	7,5	
Ref S G26 2	20	52	7	
Ref S G26 3	35	95	8	
Ref S G26 4	13	70	8	
Ref S G34 1	50	80	23	
Ref S G34 2	30	85	25	
Ref S G34 3	30	40	13	
Ref S G34 4	40	90	60	
Ref S G48 1	10	60	40	
Ref S G48 2	2	50	6	
Ref S G48 3	2	60	7	
Ref S G48 4	2	5	0,5	
Mittelwert Ref S	21	64	17	
S20 S G27 1	0	1	0,5	
S20 S G27 2	0	5	0	
S20 S G27 3	5	5	2,5	
S20 S G27 4	40	91	13	
S20 S G33 1	20	75	30	

Gassensegmente	2014	2015	2016
S20 S G33 2	20	90	9
S20 S G33 3	15	80	8
S20 S G33 4	7	60	4
Mittelwert S20 S	13	51	8
S20K S G25 1	6	10	32
S20K S G25 2	3	80	3
S20K S G25 3	8	10	7
S20K S G25 4	4	60	13
S20K S G36 1	65	80	28
S20K S G36 2	40	80	35
S20K S G36 3	20	90	53
S20K S G36 4	0	90	50
Mittelwert S20 K	18	63	28
S50 S G28 1	0	0	0
S50 S G28 2	2	2	1
S50 S G28 3	5	2	0,5
S50 S G28 4	90	2	10
S50 S G37 1	30	80	40
S50 S G37 2	30	50	28
S50 S G37 3	25	40	25
S50 S G37 4	20	10	13
Mittelwert S50 S	25	23	15
S50K S G23 1	3	40	10
S50K S G23 2	1	50	8
S50K S G23 3	11	40	20
S50K S G23 4	5	10	7
S50K S G47 1	12	52	28
S50K S G47 2	20	80	26
S50K S G47 3	20	80	25
S50K S G47 4	20	50	60
Mittelwert S50K S	12	50	23
S50Kd S G24 1	30	80	16
S50Kd S G24 2	30	82	30
S50Kd S G24 3	10	45	4
S50Kd S G24 4	25	41	5,5
S50Kd S G49 1	10	60	25
S50Kd S G49 2	25	90	33
S50Kd S G49 3	45	80	26
S50Kd S G49 4	25	50	12
Mittelwert S50Kd	25	66	19
S50KP S G32 1	4	0	0
S50KP S G32 2	0	0	0

Gassensegmente	2014	2015	2016
S50KP S G32 3	0	0	0
S50KP S G32 4	0	0	0
S50KP S G46 1	5	20	13
S50KP S G46 2	0	5	10
S50KP S G46 3	0	0	5
S50KP S G46 4	0	0	2
Mittelwert S50KP S	1	3	4
S50P S G35 1	30	85	35
S50P S G35 2	25	80	40
S50P S G35 3	15	60	30
S50P S G35 4	30	10	16
S50P S G38 1	65	90	NA
S50P S G38 2	15	90	NA
S50P S G38 3	5	5	NA
S50P S G38 4	2	0	NA
Mittelwert S50P S	23	53	30

Wiedergegeben ist der Biomasseindex der Zeigerpflanzen, der auf eine befahrungsbedingte Strukturstörung hindeutet (BMI_2) in den Jahren 2013 bis 2016 in den jeweils vier Gassensegmenten einer Fahrspur. Die Codierung der ersten Spalte der Tabelle zeigt die Versuchsvariante, die Position in der Rückegasse (S = Fahrspur), die Nummer der Rückegasse und das Segment der Gasse (1 = 0 – 12,5 m; 2 = 12,5 – 25m usw.)

Abbildung 90: Anteil Verdichtungsanzeiger am Biomasseindex (BMI) über 3 Jahre in den Fahrspuren der Maßnahmenvarianten. Fehlerbalken sind Standardabweichung zwischen den Maßnahmenwiederholungen.

6 Zusammenfassung

• Die Hypothese einer verbesserten Abtrocknung des Oberbodens durch Bodenperforation hat sich nicht bestätigt: Bodenperforation mit 20 cm tiefen Löchern (2,6 cm Durchmesser) in der Fahrspur bewirkte besonders in den ersten Untersuchungsjahren einen längeren Verbleib des Niederschlagswassers im Boden, da die Löcher als Wasserreservoire wirkten.

Erst im Jahr 2016 wurde ein geringeres Matrixpotential im Unterboden bei der Lochstanzvariante S20 festgestellt. Es sollte daher weiter untersucht werden, ob sich dieser Effekt in den Folgejahren weiter bestätigt, da hierdurch besonders der Unterboden bei weiteren Belastungen durch Befahrung, verstärkt vor Verdichtung geschützt werden könnte.

- Eine Normalisierung der nach einer Befahrung extrem hohen CO₂-Konzentration in der Bodenluft der Fahrspur in 6 cm Tiefe wurde auf der Versuchsfläche im Solling bereits nach drei Jahren beobachtet. Dies geschah in den Referenzgassen auch ohne Regenerationsmaßnahmen. Ursache hierfür scheint der relativ trockene Sommer direkt nach der ersten Befahrung zu sein, der zu Schrumpfungsrissen im Oberboden führte und so den Gasaustausch zwischen Atmosphäre und Boden positiv beschleunigte.
 Es ist zu prüfen, ob sich der regenerierte Gasaustausch auf die obersten cm des Bodens beschränkt. Im Jahr 2016 deuten Messungen im Unterboden erstmals darauf hin, dass sich die Perforationsvariante S20 auch in 20 cm uGOK positiv auf die Belüftungssituation im Unter
 - boden auswirkt. Signifikante Messungen liegen hierzu im Jahr 2016 aber nicht vor.
- Das Fehlen eines ausgeprägten Spurbilds ist nicht zwingend ein Garant für geringe Strukturstörungen sondern kann im Gegenteil auch auf Bodenverdichtungen in tiefere Bodenbereichen hindeuten.
- Organische Substanz und evtl. oberflächlich aufgebrachter Kalk werden auf den Grund der Perforationslöcher verlagert.
- Wurzeln wachsen verstärkt in die durch Bodenperforation erzeugten Löcher.
- Die Löcher werden von Regenwürmern aufgesucht / besiedelt.
- Eine Branntkalkfüllung in den Perforationslöchern bleibt nach 3 Jahren noch visuell weitgehend unverändert.
- Ein pH-Effekt der Branntkalkfüllung auf den umgebenden Boden beschränkt sich auf den unmittelbaren Nahbereich (< 5 mm).
- Die Branntkalkfüllung scheint eine gewisse austrocknende Wirkung auf den umgebenden Boden zu haben.

Verwertungspotenziale/ Ausblick/ Zusammenarbeit mit Praxispartnern

Eine mögliche Geschäftsidee stellt die Entwicklung eines im Wald einsetzbaren Geräts zur maschinellen Bodenperforation von Rückegassen dar. Geräte zum Perforieren ("Aerifizierung") existieren derzeit nur in der Rasenpflege (Golf- und Sportrasenplätze) und sind auf die Bedingungen im Wald nicht übertragbar. Am Markt gibt es aber eine Reihe von Konstruktionen zur maschinellen Entnahme von Bodenproben, die als Ausgangspunkt für eine Vorrichtung zur Bodenperforation in Frage kommen. Ein positiver Einfluss der Bodenperforation auf die biologische Aktivität und die Strukturbildung in der Fahrspur von Rückegassen konnte im Projekt beobachtet werden, insbesondere in Verbindung mit einer Kalkung.

Die im Projekt vorgenommenen methodischen Entwicklungen zur Erfassung der Bodenbelüftung (Eisenstabmethode, CO₂-Monitoring) wurden auch in anderen Teilprojekten von RÜWOLA genutzt und können ebenso in anderen Zusammenhängen zum Einsatz kommen.

7 Literatur

Arbeitskreis Standortkartierung in der Arbeitsgemeinschaft Forsteinrichtung (1985): Forstliche Wuchsgebiete und Wuchsbezirke in der Bundesrepublik Deutschland. Landwirtschaftsverlag, Münster-Hiltrup, 170 S.

Arbeitskreis Standortkartierung in der Arbeitsgemeinschaft Forsteinrichtung 1988: Leitfaden im Bodenschutz. Freiburg, 39 S.

Arbeitskreis Standortkartierung in der Arbeitsgemeinschaft Forsteinrichtung 1996: Forstliche Standortsaufnahme: Begriffe, Definitionen, Einteilungen, Kennzeichnungen, Erläuterungen. 5. Auflage, IHW-Verlag, Echin bei München, 352 S.

Aust, W. M., Tippelt, M. D., Burger, J. A., McKee WH.(1995): Compaction and Rutting During harvesting Affect Better Drained Soils More Than Poorly Drained Soils on Wet Pine Flats, Southern Journal of Applied Forestry, 19: 72–77.

Becker, J. (2013): Mündliche Mitteilung. Revierförsterei Hilwartshausen.

Bekele, A., Kellman, L., Beltrami, H. (2007): Soil Profile CO₂ concentrations in forested and clear cut sites in Nova Scotia, Canada. In: Forest Ecology and Management 242 (2-3), S. 587–597. DOI: 10.1016/j.foreco.2007.01.088.

Borchert, H., Kremer, J., Huber, C. L. (2013): Schutz des Waldbodens beim Einsatz von Forstmaschinen. Erschienen in Wald und Nachhaltigkeit, Berichte der Bayrischen Landesanstalt für Wald und Forstwirtschaft, Wissen 72, Freising.

https://www.lwf.bayern.de/mam/cms04/service/dateien/w72_wald_und_nachhaltigkeit_gesamthef _bf_gesch.pdf (Zugriff 29.03.2017).

Borchert, H., Huber, C., Goettlein, A., Kremer, J. (2015): Nutrient Concentration on Skid Trails under Brush-Mats - Is a Redistribution of Nutrients Possible? Croatian Journal of Forest Engineering 36(2):243-252. http://hrcak.srce.hr/151786 (Zugriff 17.02.2017).

Bottinelli, N., Hallaire, V., Goutal, N., Bonnaud, P., Ranger, J. (2014): Impact of heavy traffic on soil macroporosity of two silty forest soils: Initial effect and short-term recovery. In: Geoderma 217-218, S. 10–17. DOI: 10.1016/j.geoderma.2013.10.025.

Bundesamt für Geowissenschaften und Geodäsie 2008: Top 50 – Amtliche topographische Karten Niedersachsen/Bremen (DVD-Rom, Version 5), EADS Deutschland GmbH, Ulm.

BFW, Bundesforschungszentrum für Wald. Zusammenspiel von Vegetation und Abfluss. https://bfw.ac.at/rz/bfwcms.web_print?dok=5753 (Zugriff 16.02.2016).

Certini, G., Corti, G., Agnelli, A., Sanesi, G. (2003): Carbon dioxide efflux and concentration in two soils under temperate forests. In: Biol Fert Soils 37, S. 39–46.

Clemens, D., Schack-Kirchner, H., Hildebrand, E.E., Bacher-Winterhalter, M., Becker, G., Amann, S., Schäffer, J., Wilpert, K. v., Gaertig, T., Green, K. (2008): Kurzanleitung zur Identifikation und Wiederverwendung alter Fahrlinien. Albert-Ludwigs-Universität Freiburg, Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, HAWK Göttingen. Abrufbar unter: https://www.bodenkunde.uni-freiburg.de/objekte/kurzanleitung (Stand 06.03.2015). Delta-T Devices Ltd (1999): ThetaProbe soil moisture sensor type ML2x user manual ML2x-UM-1.21. Cambridge CB5 0EJ, England.

DIN EN ISO 17892-2 (2015): Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben – Teil 2: Bestimmung der Dichte des Bodens (ISO 17892-2:2014).

DIN 18121-1 (1998): Untersuchung von Bodenproben - Wassergehalt - Teil 1: Bestimmung durch Ofentrocknung. Beuth-Verlag GmbH, Berlin.

DIN 18196:12011-05: Erd- und Grundbau - Bodenklassifikation für bautechnische Zwecke. Beuth-Verlag GmbH, Berlin.

DIN EN ISO 11272: Bodenbeschaffenheit – Bestimmung der Trockenrohdichte (ISO 11272:1998); Deutsche Fassung EN ISO 11272:2014. Deutsches Institut für Normung e.V.; Beuth Verlag GmbH.

DIN EN ISO 15936 (2012): Schlamm, behandelter Bioabfall, Boden und Abfall – Bestimmung des gesamten organischem Kohlenstoff (TOC) mittels trockener Verbrennung; Deutsche Fassung EN 15936:2012 – DIN Deutsches Institut für Normung e.V. Beuth Verlag GmbH, Berlin.

DIN EN ISO 17892-1 (2014): Geotechnische Erkundung und Untersuchung – Laborversuche an Bodenproben – Teil 1: Bestimmung des Wassergehalts. DIN Deutsches Institut für Normung e.V. Beuth Verlag GmbH, Berlin.

DIN ISO 10390 (2005): Bodenbeschaffenheit – Bestimmung des pH-Wertes (ISO 10390: 2005) - Beuth Verlag, Berlin.

DIN ISO 10693 (1997): Bodenbeschaffenheit – Bestimmung des Carbonatgehaltes – Volumetrisches Verfahren. Beuth Verlag GmbH, Berlin.

DIN ISO 11277 (2002): Bestimmung der Partikelgrößenverteilung in Mineralböden - Verfahren mittels Siebung und Sedimentation. Beuth-Verlag GmbH, Berlin.

DIN ISO 10390:2005: Bodenbeschaffenheit - Bestimmung des pH-Wertes. Beuth Verlag, Berlin.

Ebeling, C., Lang, F.; Gaertig, T. (2016): Structural recovery in three selected forest soils after compaction by forest machines in Lower Saxony, Germany. In: Forest Ecology and Management 359, S. 74–82. DOI: 10.1016/j.foreco.2015.09.045.

Ellenberg, H. (1986): Ökosystemforschung – Ergebnisse des Sollingprojekts: 1966 – 1986. Verlag Eugen Ulmer, Stuttgart.

Erler, J., Grüll, M., Wächter, M. (2013): Bodenschonende Holzernte. Reihe Technikmanagement in der Forstwirtschaft. Fachinstitut für Waldarbeit, Tharandt.

Feeney, D., Crawford, J. W., DANIELL, T. J., Hallett, P. D., Nunan, N., Ritz, K., Rivers, M., YOUNG, I. M. (2006): Three-dimensional microorganization of the soil-root-microbe system. Microbial Ecology 52, 151-158.

Feger, K.H., Lorenz, K., Raspe, S., Armbruster, M. (2000): Mittel- bis langfristige Auswirkungen von Kompensations-bzw. Bodenschutzkalkungen auf die Pedo- und Hydrosphäre. Schlussbericht. http://boku.forst.tu-dresden.de/pdf/PEF196003SBer.pdf (03.02.2015).

Fletchard, C. R., Neftel, A., Jocher, M., Ammann, C., Leifeld, J., Fuhrer, J. (2007): Temporal changes in soil pore space CO₂ concentration and storage under permanent grassland. In: Agricultural and forest meteorology 142, S. 66–84.

Forst Baden-Württemberg (2012): Merkblatt Bauliche Maßnahmen zur Erhaltung der technischen Befahrbarkeit der Rückegassen.

http://www.forstbw.de/fileadmin/forstbw_infothek/forstbw_praxis/ForstBW_PRAXIS_Bauliche_Mas snahmen.pdf (Zugriff 16.08.2016).

Fründ, H.-C., Averdiek, A. (2016): Soil aeration and soil water tension in skidding trails during three years after trafficking. Forest Ecology and Management 380:224-231. http://www.sciencedirect.com/science/article/pii/S0378112716305345 (Zugriff 01.03.2017).

Gaertig, T., Schack-Kirchner, H., Hildebrand, E., Wilpert, K. v. (2002): The impact of soil aeration on oak decline in southwestern Germany. In: Forest Ecology and Management 159 (1-2), S. 15–25. DOI: 10.1016/S0378-1127(01)00706-X.

Gaertig, T., Green, K., (2008): Waldbodenvegetation als Weiser für Bodenstrukturstörungen. AFZ- Der Wald 6: S. 300-301 und in Abschlussbericht - Entwicklung und Praxiserprobung eines Testkits zur Lokalisierung bodenmechanisch vorbelasteter Bodenareale von Forststandorten und die Einbeziehung dieser Fahrlinien in zukünftige Konzepte der Waldpflege und Holzernte.

Goutal, N.; Parent, F.; Bonnaud, P.; Demaison, J.; Nourrisson, G.; Epron, D.; Ranger, J. (2012): Soil CO₂ concentration and efflux as affected by heavy traffic in forest in northeast France. In: European Journal of Soil Science 63 (2), S. 261–271. DOI: 10.1111/j.1365-2389.2011.01423.x.

Goutal, N, Reanult, P., Ranger, J. (2013): Forwarder traffic impacted over at least four years soil air composition of two forest soils in northeast France. Geoderma 193-194: 29-40. DOI: 10.1016/j.geoderma.2012.10.012.

Guckland, A., Paar, U., Dammann, I., Evers, J., Meiwes, K.J., Schönfelder, E., Ullrich, T., Mindrup, M., Eichhorn, J. (2010): Tiefenwirkung der Bodenschutzkalkung. Erschienen in AFZ-DerWald, Heft 24/2010, Deutscher Landwirtschaftsverlag GmbH, Hannover.

Guertal, B., Han, D., (2002): Does aerification help solve compaction problems? TurfGrass Trends, February 2002, T4-T10.

Hashimoto, S., Komatsu, H. (2006): Relationships between soil CO₂ concentration and CO₂ production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses. In: Journal of Forest Research 11, S. 41–50.

Hedemann, H.A. (1957): Die Gewölbestruktur des Sollings und ihre Entstehung. Geologisches Jahrbuch, Hannover, Bd. 72. 529-637 S.

Hetsch, W., Gaertig, T. (2011): Skriptenreihe 9 – Waldvegetationskunde, Standorts- und Biotopkartierung, neu bearbeitete (8.) Auflage. Förderverein Fakultät Ressourcenmanagement in Göttingen e.V., Göttingen, 145 S. Huber, C., Weis, W., Göttlein, A., Borchert, H., Kremer, J., Matthies, D. (2011): Die Rückegasse - ein Holzweg für eine nachhaltige Nährstoffversorgung der Wälder? 15. Statusseminar des Kuratoriums für forstliche Forschung; Freising. https://www.lwf.bayern.de/mam/cms04/forschungprojekte/dateien/kurzfassung_vortraege_statusseminar_2011.pdf (Zugriff 17.02.2017).

Hünting, K., Aymanns, A., Pries, M. (2009): Silierung von Gras unter schwierigen Erntebedingungen. Landwirtschaftskammer NRW. Onlinezugriff vom 15.08.2016: https://www.landwirtschaftskammer.de/riswick/pdf/silieren_von_gras_unter_schwierigen_bedingungen.pdf.

Jensen, T. (2013 a): Standortstypenkarte der digitalen Standortskartierung im Solling (2000 - 2011), Niedersächsische Landesforsten, Forstplanungsamt, Wolfenbüttel, mündliche Mitteilung in Struckmeyer 2013.

Jensen, T. (2013 b): Standortskartierer, Niedersächsische Landesforsten, Forstplanungsamt, Wolfenbüttel, mündliche Mitteilung in Struckmeyer 2013.

Jordan, H., Benne, I. (1986): Geologische Karte von Northeim West: Erläuterungen zu Blatt Nr. 4225 Northeim West. Niedersachsen, Landesamt für Bodenforschung, Hannover, 144 S.

KA5, AD-HOC-Arbeitsgruppe Boden (2005): Bodenkundliche Kartieranleitung, 5. Auflage, Hannover. Schweizerbart´scher Verlag.

Kanton Luzern (2013): Bodenschutz im Wald. Merkblatt Juli 2013 des Bau-, Umwelt- und Wirtschaftsdepartement des Kantons Luzern, Landwirtschaft und Wald (lawa). Abrufbar unter: https://lawa.lu.ch/-

/media/LAWA/Dokumente/Download/Download_Wald/mb_bodenschutz_im_wald.pdf?la=de-CH (Stand 06.03.2015)

Kelemen, K., Mihók, B., Gálhidy, L., Standovár, T. (2012): Dynamic Response of Herbaceous Vegetation to Gap Opening in a Central European Beech Stand. Silva Fennica 46(1). The Finnish Society of Forest Science.

Krauss, H.-H.(1997): Beitrag zur Frage der Kalkdüngebedürftigkeit von Umwandlungsbestockungen auf Standorten des norddeutschen Tieflandes. Beiträge für Forstwirtschaft und Landschaftsökologie 31, 125-133

Labelle, E. R.; Jaeger, D. (2011): Soil compaction caused by cut-to-length forest operations and possible short-term natural rehabilitation of soil density. In: Soil Science Society of America Journal 75 (6), S. 2314–2329. downlaod at: https://www.soils.org/publications/sssaj.

Lamparski, F. (1985): Der Einfluß der Regenwurmart Lumbricus badensis auf Waldböden im Schwarzwald. Freiburger Bodenkundl. Abh. 15, 205 S.

LBEG: NIBIS Kartenservers des Niedersächsischen Landesamtes für Bergbau, Energie und Geologie. https://nibis.lbeg.de/cardomap3/ (Zugriff: 02.04.2013).

LBEG, Landesamt für Bergbau, Energie und Geologie (2014): Erosionsgefährdung durch Wasser. http://www.lbeg.niedersachsen.de/portal/live.php?navigation_id=825&article_id=607&_psmand=4 (Stand 07.03.2014) Lüscher, P., Frutig, F., Thees, O. (2016): Physikalischer Bodenschutz im Wald. Waldbewirtschaftung im Spannungsfeld zwischen Wirtschaftlichkeit und Erhaltung der physikalischen Bodeneigenschaften. Bundesamt für Umwelt, Bern. Umwelt-Wissen Nr. 1607: 159 S.

Lüscher, P., Frutig, F., Sciacca, S., Spjevak, S., Thees, O., (2010): Physikalischer Bodenschutz im Wald. Bodenschutz beim Einsatz von Forstmaschinen, Merkblatt für die Praxis ISSN 1422-2876 Nr. 45, Birmensdorf, Schweiz. http://www.wsl.ch/dienstleistungen/publikationen/pdf/10481.pdf (Zugriff 16.05.2017).

Maier, M., Schack-Kirchner, H., Hildebrand, E. E., Schindler, D. (2011): Soil CO₂ efflux vs. soil respiration. Implications for flux models. In: Agricultural and forest meteorology 151 (12), S. 1723–1730. DOI: 10.1016/j.agrformet.2011.07.006.

Marschner, B. (1995): Wirkungen von Kalkungen auf Bodenchemismus und Stoffausträge. Allg. Forstz. **50**, 932-935.

MIHÓK, B., GÁLHIDY L., KENDERES, K., STANDOVÁR, T. (2007): Gap Regeneration Patterns in a Seminatural Beech Forest Stand in Hungary. Acta Silv. Lign. Hung., Vol. 3 (2007) 31-45

MMM TECH SUPPORT (2016): Watermark allgemein. https://www.mmm-tech.de/watermark/info?lang=de (Zugriff 05.09.2016).

Müller-Inkmann, M. (2013): Hypothetisches Schema der Wirkung gestanzter Löcher im Boden einer Fahrspur. Ausarbeitung im Zuge der Promotion im Rüwola-Projekt, Teilprojekt 5.

Nebe, W., Leube, F. (1995): Experimente zum meliorativen Waldumbau im Erzgebirge. Forst u. Holz 50, 177-182.

Niedersächsische Landesforsten (2005): Forstliche Standortsaufnahme – Geländeökologischer Schätz-rahmen – Anwendungsbereich: pleistozänes (diluviales) Tiefland, Mittelgebirge, Berg- und Hügelland. Niedersächsisches Forstplanungsamt, Wolfenbüttel.

Niedersächsische Landesforsten (2007): Forstliche Standortsaufnahme – Geländeökologischer Schätz-rahmen – Anwendungsbereich: pleistozänes (diluviales) Tiefland, Mittelgebirge, Berg- und Hügelland. Niedersächsisches Forstplanungsamt, Wolfenbüttel.

Niedersächsische Landesforsten (2009): Forstliche Standortsaufnahme – Geländeökologischer Schätz-rahmen – Varianten – Anwendungsbereich: pleistozänes (diluviales) Tiefland, Mittelgebirge, Berg-und Hügelland. Niedersächsisches Forstplanungsamt, Wolfenbüttel. 5 S.

Niedersächsische Landesforsten (2015): Bodenschutz bei der Holzernte in den Niedersächsischen Landesforsten. Merkblatt Bodenschutz.

Niedersächsische Landesforsten (2016): Niedersächsisches Forstamt Neuhaus, Klima. https://www.landesforsten.de/Klima.450.0.html (Zugriff 04.02.2016).

NW-FVA, Nordwestdeutsche Forstliche Versuchsanstalt (2010): Merkblatt Bodenschutzkalkung. http://www.ml.niedersachsen.de/portal/live.php?navigation_id=20026&article_id=5181&_psmand= 7. (Stand 12.03.2014)Lüscher
NW-FVA-Nordwestdeutschen Forstlichen Versuchsanstalt (2008): Ergebnisse angewandter Forschung zur Buche. Erschienen als Band 3 der Reihe "Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt" in den Universitätsdrucken im Universitätsverlag Göttingen.

Owens, P.R, Wilding, L.P, Miller, W.M, Griffin, R.W (2008): Using iron metal rods to infer oxygen status in seasonally saturated soils. In: *CATENA* 73 (2), S. 197–203. DOI: 10.1016/j.catena.2007.07.009.

Rothe, P. (2009): Die Geologie Deutschlands: 48 Landschaften im Portrait. 3. durchgesehene und aktualisierte Auflage, Primus-Verlag, Darmstadt, 240 S.

Sparrer, J. (2017): Auswirkung von Bodenperforation und Kalkung auf Bodeneigenschaften von Rückegassen in einem Buchenbestand des Sollings. Masterarbeit an der Hochschule Osnabrück.

Struckmeyer, C. (2013): Standortsfeinkartierung in einem Buchenjungbestand auf lössüberlagertem Buntsandstein im niedersächsischen Forstamt Dassel . Bachelorarbeit im Studiengang Forstwirtschaft der Hochschule für angewandte Wissenschaft und Kunst Hildesheim, Holzminden, Göttingen, Fakultät Ressourcenmanagement.

Ulrich, B., Mayer, R.; Khanna, P.K. (1979): Deposition von Luftverunreinigung und ihre Auswirkungen in Waldökosystemen im Solling. J.D. Sauerländer's Verlag, Frankfurt/Main.

Van Couwenberghe, R., Collet, C., Lacombe, E., Gégout, J.-C. (2011): Abundance response of western European forest species along canopy openness and soil pH gradients. Forest Ecology and Management 262 (2011) 1483–1490, Elsevier.

Welsch, D. L., Hornberger, G. M. (2004): Spatial and temporal simulation of soil CO2 concentrations in a small forested catchment in Virginia. In: *Biogeochemistry* 71, S. 415–436. downlaod at http://www.jstor.org/stable/4151487.

Wilpert, K. von; Schäffer, J. (2006): Ecological effects of soil compaction and initial recovery dynamics: A preliminary study. In: *Eur J Forest Res* 129, S. 129–138.

8 Anlagen

I.	Fotographische Darstellung Fahrspuren	146
II.	Lister der Zufallszahlen	156
III.	Kartierbögen der Profilansprache	157
IV.	Positionierung der WM-Sensoren. Mit M= Mittelspur, S= Fahrspur, B=Bestand	159
V.	Positionierung und Ablesung der CO2-Sensoren (2013)	161
VI.	Positionierung und Ablesung der CO2-Sensoren (2014)	162
VII.	Einfluss der Kategorisierungsmethode auf die Auswertung der Eisentäbe	163
VIII.	Einfluss der Verweilzeit im Boden auf die Auswertung der Eisentäbe	166
IX.	Ergebnisse der Konsistenzgrenzenermittlung	167
Х.	Berechnungen zum Schrumpfverhalten	173
XI.	Erfassung der Fahrspuren	179
XII.	Erfassung der Wulstfläche	180
XIII.	Kalkulation der Wulstquerschnittsfläche	181
XIV. 2013	grav. Wassergehalt-Mittelwerte in 0-5 cm Tiefe in der Fahrspur und im Mittels und 2014	treifen, Jahre 182

I. Fotographische Darstellung Fahrspuren

Fotographische Darstellung der Fahrspuren

Gasse 28	Mal	3nahi	me S	mit Stubben			
Gassensegment	S1	S2	S 3	S4	Mittelwert		
Spurtiefe (cm)	15	13	8	8	11		
Wulstvolumen (cm2)							

Gasse 27 Spurtiefe < 5 cm Wulst 0 − 80 cm² → WSL-Spurtyp 2

Gasse 26 Spurtiefe 5 - 10 cm Wulst 0 - 80 cm² → WSL-Spurtyp 2 (-3)

Gasse 25 Spurtiefe 5 - 10 cm Wulst > 300 cm² → WSL-Spurtyp 2 - 3

Gasse 24 Spurtiefe 5 - 10 cm Wulst > 300 cm^2 \rightarrow WSL-Spurtyp 2 - 3

Gasse 23 Spurtiefe 10 - 15 cm Wulst > 300 cm^2 \rightarrow WSL-Spurtyp 3

Gasse 31 Spurtiefe 5 - 10 cm Wulst 0 - 80 cm² \rightarrow WSL-Spurtyp 2 (-3)

Gasse 32 Spurtiefe 5 - 10 cm Wulst 0 cm² → WSL-Spurtyp 2

Gasse 33 Spurtiefe 10 - 15 cm Wulst 150 - 300 cm² → WSL-Spurtyp 3

Gasse 34 Spurtiefe 10 cm Wulst 0 cm² → WSL-Spurtyp 2

Gasse 35 Spurtiefe 10 - 15 cm Wulst 0 cm² \rightarrow WSL-Spurtyp 2 (-3)

Gasse 36 Spurtiefe 10 cm Wulst $0 - 80 \text{ cm}^2$ \rightarrow WSL-Spurtyp 2 (-3)

Gasse 37 Spurtiefe 10 cm Wulst 150 - 300 cm² \rightarrow WSL-Spurtyp 3

Gasse 38 Spurtiefe 15 cm Wulst 80 - 150 cm² \rightarrow WSL-Spurtyp 2 (-3)

Gasse 45 Spurtiefe 5 - 10 cm Wulst 0 cm² → WSL-Spurtyp 2

Gasse 46 Spurtiefe > 25 cm Wulst $0 - 80 \text{ cm}^2$ \rightarrow WSL-Spurtyp 3

Gasse 47 Spurtiefe 5 - 10 cm Wulst 150 - 300 cm² \rightarrow WSL-Spurtyp 2 (-3)

Gasse 48 Spurtiefe 10 - 15 cm Wulst 150 - 300 cm² → WSL-Spurtyp 3

Gasse 49 Spurtiefe 10 - 15 cm Wulst 150 - 300 cm² → WSL-Spurtyp 3

II. Lister der Zufallszahlen

Zufallszahlen für die Wahl von Probenpunkten im Solling. Die Zahlen geben die Entfernung in Meter vom Startpunkt der Versuchsvariante an. Für jedes Segment (S1...S4) sind acht Probenpunkte per Zufallszahl vorgegeben. Punkte für Bestand (B), Spur (S), und Mittelstreiden (M) haben jeweils eigene Zuordnungen. Zuordnung der Probenpunkte in der vorgegebenen Reihenfolge (1...8). Fällt ein Probenpunkt auf eine Stelle, die nicht beprobt werden kann/soll, muss das in der Liste durch Durchstreichen gekennzeichnet werden. Den Grund für die Nicht-Beprobung im Probenahmeprotokoll vermerken. Punkte, an denen bereits eine Probe genommen /eine Messung vorgenommen wurde, werde in der Liste eingekreist.

Variante 2 R1 6 5 4 3 8 2 2 R2 7 6 1b 7b 7b<	8b 4b M B S M B S N 2 48,4 46,9 48,0 46,7 43,4 45,3 42 1 46,3 49,3 42,8 40,7 48,3 38,7 35	R3 55 A B S M B S M 17.6 45 1 20 5 11 2 46 6 10
8 5 M 8 5 M	M B S M B S M 2 48,4 46,9 48,0 46,7 43,4 45,3 42 1 46,3 49,3 42,8 40,7 48,3 38,7 39	A B S M B S M
54-1 38 9 42 5 44 8 41 3 48 0 45 1 40 7 42 7 38 2 39 2 42 2 49 2 46 9 41 0 42 7 38 4 48 5 48 4 46 2 41 9 47 9 41 0 47 1 48 0 42 2 40 5 38 49.4 39.1 38.5 47.6 40.9 41.4 41.7 40.0 41.6 40.1 44.9 47.0 41.6 38.5 45.3 40.6	2 48,4 46,9 48,0 46,7 43,4 45,3 42 1 46,3 49,3 42,8 40,7 48,3 38,7 39	E 43 C 45 4 30 E 44 3 4C C 40
and ask who released ask	1 46.3 49.3 42.8 40.7 48.3 38.7 39	2,5 47,6 45,1 38,5 41,3 46,6 49,
54-2 41.8 44.5 38.3 40.8 45.7 37.8 48.4 45.9 44.2 40.6 46.9 39.0 49.1 44.3 47.4 38.9 41.5 47.2 48.9 48.1 43.6 40.5 43.0 43.4 48.8 44.6 47, 44.1 47.7 47.1 42.3 43.6 47.6 39.2 47.5 46.1 38.6 48.8 40.3 44.4 38.9 44.1 41.3 47.4 41.3 47.4 47.1 47.1 47.1 47.1 47.1 47.1 47.1		,1 47,1 43,2 40,0 45,7 42,1 38,
54-3 48,3 48,7 45,8 48,8 38,4 47,0 38,8 46,8 40,1 38,8 45,2 38,5 48,2 39,2 42,2 39,7 47,9 41,1 41,4 48,7 38,2 45,6 41,6 41,8 47,3 39,0 45, 46,4 44,1 42,3 49,3 46,4 49,0 40,5 38,0 45,0 45,7 40,0 41,9 43,7 44,8 38,4 44,0	4 45,9 42,6 47,5 48,6 43,3 48,0 40	0,6 45,0 49,0 44,5 38,2 43,3 46,
54-4 48,8 40,3 41,5 42,9 42,4 39,5 43,2 49,2 41,1 42,1 41,0 41,4 41,5 48,4 44,0 43,1 42,7 47,9 43,3 40,5 49,3 42,9 38,1 49,4 45,9 38,0 42, 43,5 46,0 46,4 39,7 44,7 38,7 44,9 48,9 40,6 39,4 46,1 42,8 39,8 39,3 43,6 49,0 49,0 49,0 49,0 49,0 49,0 49,0 49,0	0 38,4 39,6 45,5 38,9 44,3 49,2 47	4 41,0 38,8 45,4 40,8 38,7 41,
54-5 47,7 39,8 42,6 47,4 49,1 48,2 47,2 41,7 46,2 47,7 44,1 44,5 42,1 46,0 38,1 46,4 38,4 41,7 39,9 38,5 39,6 41,7 42,4 41,2 41,6 43,2 46, 38,7 44,5 43,0 45,1 39,1 43,5 40,0 41,5 45,5 42,9 41,7 44,0 40,3 48,4 38,8 47,3 45,1 44,0 40,3 48,4 38,8 47,3 45,1 44,0 40,3 48,4 41,4 44,5 43,0 45,1 44,5 44,0 45,1 44,0 45	9 38,2 46,5 49,3 47,1 38,7 42,1 44	,3 40,5 39,7 46,9 46,8 47,5 38,
54-6 44,6 47,6 44,3 42,2 41,8 48,4 38,5 38,5 43,2 42,8 47,6 48,1 43,2 38,2 48,0 48,8 40,7 40,7 49,4 46,1 44,7 39,0 44,7 42,8 46,5 46,2 49, 45,4 48,6 41,6 38,5 40,5 44,6 42,9 46,8 41,0 44,2 40,4 39,4 41,1 47,4 39,5 42,3	1 45,0 43,5 43,8 44,4 38,0 40,3 48	3,9 45,8 44,1 48,1 42,6 46,3 49,
54-7 42,5 39,4 42,3 45,5 47,7 39,2 40,6 48,4 43,6 41,4 48,1 47,2 45,6 49,1 47,0 41,6 43,2 39,1 45,8 39,7 44,0 47,8 47,5 44,3 39,7 48,8 48, 45,9 39,6 44,3 43,0 45,6 46,9 41,2 42,4 41,1 45,4 46,5 38,9 43,2 40,1 45,2 45,4 41,1 45,4 46,5 46,9 41,2 42,4 41,1 45,4 44,5 44,4 41,4 41,4 41,4 41	3 44,6 42,2 45,4 41,7 44,7 38,2 43	3,0 38,5 39,3 40,5 44,5 40,2 42,
54-8 41.1 42,8 43.0 44,3 39,7 41.7 46,1 46,4 42,2 49,4 48,8 42,1 39,7 40,3 46,3 45,0 45,4 44,1 42,6 44,9 45,3 49,5 40,6 48,6 41,1 47,7 47, 44,7 43,3 48,7 39,0 45,1 43,1 41,8 45,8 37,9 39,6 39,0 41,5 42,2 39,8 43,0 45,5 45,4 44,1 42,6 44,9 45,3 49,5 40,6 48,6 41,1 47,7 47, 47, 44,7 43,3 48,7 39,0 45,1 43,1 41,8 45,8 37,9 39,6 39,0 41,5 42,2 39,8 43,0 45,5 45,6 44,9 45,3 49,5 40,6 48,6 41,1 47,7 47, 47, 44,7 43,3 48,7 39,0 45,1 43,1 41,8 45,8 37,9 39,6 39,0 41,5 42,2 39,8 43,0 45,5 45,6 44,9 45,3 49,5 40,6 48,6 41,1 47,7 47, 47, 44,7 43,3 48,7 39,0 45,1 43,1 41,8 45,8 37,9 39,6 39,0 41,5 42,2 39,8 43,0 45,5 45,6 44,9 45,8 45,8 45,8 45,8 45,8 45,8 45,8 45,8	3 41,4 47,4 45,9 46,4 41,7 41,6 38	3,3 44,5 40,2 49,1 45,0 43,7 45,
53-1 32,3 29,2 35,9 36,1 36,6 27,9 27,6 35,0 32,2 27,6 26,6 30,4 32,0 37,0 34,4 32,8 36,8 25,9 35,1 31,4 26,2 36,5 27,5 32,9 29,8 32,7 33, 27,8 36,1 36,0 32,4 34,8 32,8 27,3 27,8 36,5 34,0 25,5 31,7 36,3 31,3 36,4 30,4 30,4 30,4 30,4 30,4 30,4 30,4 30	7 29,9 26,8 28,5 26,5 29,8 26,4 36	5,3 31,6 30,0 32,4 36,7 30,9 34,
53-2 36.5 34.0 25,4 34.2 26,7 26,1 33,2 26,1 34,6 29,3 25,6 26,0 37,0 35,1 33,1 34,2 29,8 34,6 26,3 34,8 34,8 26,2 31,2 30,8 29,1 30,4 33, 35,5 30,9 31,4 28,1 30,5 26,4 30,6 32,5 28,2 27,7 34,3 35,2 31,4 27,4 28,9 36,9 36,9 36,9 36,9 36,9 36,9 36,9 36	8 30,5 30,9 27,7 30,1 26,9 33,8 34	,6 34,7 34,2 29,2 31,9 25,7 28,
53-3 35.0 30.5 30.9 29.5 31.2 30.1 26.7 35.9 30.9 26.5 32.2 35.1 33.9 26.6 33.8 29.5 30.6 33.9 36.1 36.0 25.5 36.0 32.3 28.1 30.9 31.8 35. 31.4 30.5 26.4 30.7 29.5 36.0 28.9 30.6 29.1 32.6 30.2 25.9 26.5 36.0 32.0 34.1	3 32,4 31,8 30,3 28,5 35,7 31,3 27	1 35,7 33,0 27,4 35,7 31,6 26,
53-4 35.8 32.3 34.6 29.0 33.7 32.3 36.0 32.8 36.3 35.9 35.5 33.5 30.4 27.5 30.8 32.0 35.3 33.0 36.9 32.1 36.5 27.8 33.4 26.7 32.1 35.2 34. 33.9 33.1 29.2 33.5 26.9 31.2 33.6 25.7 30.6 30.3 32.8 29.5 32.1 30.3 25.4 31.9	0 28,9 30,4 31,3 31,4 25,8 27,5 33	8,8 28,2 36,7 30,2 29,5 29,0 31,
53-5 27.6 31.9 29.4 37.0 29.0 31.2 29.4 31.4 31.8 27.2 29.8 34.2 27.0 31.3 29.2 31.1 26.4 29.6 27.7 33.8 27.5 25.5 35.9 26.3 36.8 31.2 27. 30.1 29.3 27.1 33.1 35.6 36.4 25.8 36.3 27.6 31.0 29.3 36.5 34.1 32.6 28.4 28.5	6 33,0 28,8 25,7 27,6 34,2 29,3 27	7 35,3 35,5 34,6 36,1 26,6 30,
53-6 28.5 31.1 28.4 33.7 35.0 34.9 28.5 33.9 29.6 30.3 36.2 29.8 35.0 28.2 36.5 26.4 34.9 32.2 26.7 28.6 35.8 34.2 35.8 34.7 30.1 27.8 31, 32.9 35.4 35.1 26.8 36.4 25.5 32.9 34.7 36.9 33.2 27.2 30.1 36.1 33.6 31.4 26.2	2 31,3 33,1 33,8 34,6 28,5 31,9 26	6,4 25,6 33,9 33,1 31,3 34,2 29,
53-7 27.2 35,4 33,4 28,6 27,4 27,1 30,2 33,0 32,7 35,0 26,2 28,3 29,6 29,8 36,0 36,1 33,7 30,2 32,3 29,1 33,6 31,5 33,9 35,3 26,2 28,4 30, 36,1 27,0 28,0 31,2 30,1 27,6 28,4 27,4 34,5 29,2 31,4 34,7 35,6 34,4 27,3 31,8	9 33,1 34,0 36,3 30,6 33,0 32,7 31	,5 32,4 31,7 26,1 33,0 32,5 30,
53-8 30.7 34.0 35.5 26.7 30.1 31.7 26.8 28.1 30.5 28.2 31.2 35.9 26.6 36.1 27.8 27.7 28.5 27.0 33.6 35.5 29.7 29.3 29.2 28.5 36.3 27.1 32, 29.3 34.4 25.8 25.6 33.1 29.1 35.4 29.7 28.6 35.9 30.6 32.4 28.4 31.9 35.9 25.5	8 27,0 27,9 31,6 28,0 30,6 33,4 28	3,1 27,6 30,6 26,7 28,7 27,6 27,
52-1 213 232 18.6 22.6 17.8 23.5 19.8 15.7 21.7 19.2 15.7 15.9 15.1 19.0 16.0 16.7 22.4 14.9 24.0 13.4 16.8 20.7 20.2 15.2 16.8 17.9 23. 17.5 20.8 24.7 18.9 15.6 23.8 22.9 15.2 18.7 24.2 23.5 22.5 20.9 18.0 14.0 20.2	6 21,4 21,6 13,8 15,6 17,8 18,5 18	3,8 21,8 24,6 16,4 21,0 14,9 18,
52-2 245 13.9 13.9 19.5 21.7 18.0 23.9 19.8 22.3 14.3 16.0 23.8 21.1 21.0 16.9 15.3 21.3 24.2 13.5 14.4 23.7 19.5 19.7 19.8 20.2 14.7 14. 16.7 15.7 14.1 21.4 21.0 19.8 21.2 20.6 18.2 13.3 19.7 20.9 21.5 13.9 21.8 22.4	5 23,5 18,2 14,3 20,5 24,5 15,0 15	,1 20,7 16,9 18,2 20,3 17,2 19,
52-3 14.8 24.6 12.8 17.0 24.3 15.2 18.6 23.1 19.7 17.4 23.3 13.4 13.6 22.7 18.9 18.9 20.2 23.2 19.1 16.0 18.8 15.6 13.8 19.3 24.6 22.1 22, 23.4 22.4 22.7 16.9 20.7 14.4 20.6 23.0 21.3 21.5 19.4 16.9 22.2 17.0 15.0 21.7	3 15,8 20,5 17,0 18,2 22,5 15,7 14	,6 17,9 14,3 18,8 24,2 22,1 19,
52-4 230 164 203 182 157 21.5 20.6 190 22.7 207 22.8 21.9 230 199 198 134 22.0 131 24.6 18.6 21.6 17.5 17.7 14.5 23.2 16.8 15, 18.8 19.5 13.4 17.5 14.7 13.4 16.0 16.2 20.4 19.5 20.3 15.2 17.3 23.8 18.9 16.6	8 13,4 24,6 23,1 21,4 15,2 19,4 14	,2 22,8 22,6 20,1 24,6 20,6 22,
52-5 218 153 168 141 218 142 223 239 172 196 176 141 131 235 135 158 182 160 160 169 164 172 193 234 197 132 19 20,9 20,5 23,0 20,2 193 20,5 21,6 17,3 16,1 21,0 18,1 13,6 14,6 21,5 15,7 18,9	7 18,5 16,1 19,2 14,2 19,2 19,0 22	4 16,6 15,6 14,7 15,1 23,6 16,
52-6 190 144 148 22.3 200 209 143 178 137 170 217 234 168 211 22 216 132 237 187 22 5 183 185 206 22 3 22 4 24 5 24 22.9 14.0 22.0 21.8 22.3 22.9 16.5 24.2 14.6 20.3 15.9 20.2 19.0 20.2 22.7 14.8	0 16,7 16,7 22,5 20,0 19,7 21,2 20	0,0 14,3 19,6 22,4 18,4 17,8 21,
52-7 167 20.5 15.9 22.9 19.8 22.2 17.9 13.8 15.8 24.5 15.1 19.5 18.1 14.8 21.6 17.2 16.0 20.1 20.2 23.9 22.3 24.0 23.6 14.1 16.3 16.4 17. 23.4 13.3 15.3 18.1 15.5 18.1 19.0 20.2 14.1 15.7 21.7 16.0 19.8 16.3 16.3 21.4	8 22,6 19,6 14,9 17,7 18,4 22,8 18	3,1 15,7 13,8 16,8 22,8 19,0 13,
52-8 241 23.4 17.1 21.6 160 22.6 22.7 19.7 20.5 14.9 13.4 17.1 14.5 18.1 18.0 22.0 16.3 20.7 13.2 21.1 24.7 24.4 24.3 15.7 18.8 19.2 20. 14.4 17.5 19.4 22.4 24.0 14.8 18.4 19.4 21.6 23.3 21.1 19.5 18.5 22.1 23.3 19.8	2 22,1 14,7 24,1 13,5 20,9 23,5 21	,1 18,8 18,6 21,5 19,2 15,9 15,
51-1 66 82 101 28 96 102 111 108 25 55 40 43 7.0 112 109 80 107 91 90 118 56 83 12 26 21 115 76 33 81 103 7.1 9.2 28 12,0 8,4 2.9 0.5 1,0 9,7 7,1 11,7 51 0,9	5,4 6,8 10,9 5,1 7,5 8,2 0,	5 6,3 4,4 8,8 3,9 9,8 6,5
51-2 72 94 86 08 101 108 29 72 89 31 111 78 100 13 36 05 87 112 99 19 98 31 07 43 72 17 62 20 26 54 66 54 104 69 42 20 100 45 16 91 57 44 19	1,3 6,2 11,5 3,0 9,3 11,1 3,	7 5,6 5,7 4,0 11,1 3,4 3,8
51-3 30 15 108 104 111 48 36 41 16 93 119 86 29 21 83 86 29 84 56 102 20 05 26 16 89 79 06 60 14 68 60 20 57 61 07 69 49 119 83 50 50 05 94	5,9 8,8 3,2 6,7 8,1 3,0 2,	9 9,4 7,6 7,3 10,9 10,7 7,2
514 55 115 98 88 86 21 24 59 106 12 92 16 12 92 55 34 84 16 13 13 110 62 81 108 31 98 44 11 35 07 98 12 118 44 106 97 120 40 33 13 91 14 51	11,8 3,9 8,7 1,8 10,1 7,0 4,	4 7,1 1,3 0,5 4,4 0,9 1,1
51-5 105 87 30 41 67 87 117 32 47 26 36 26 49 31 68 53 17 89 81 93 29 107 88 54 41 85 87 17 113 84 78 10.0 66 114 5.5 10.9 53 2.5 50 4.2 6.2 88 5.8	3,6 10,6 5,2 7,8 11,9 0,6 8,	0 11,7 7,2 10,8 0,7 3,9 0,5
51-6 79 71 24 77 81 42 94 64 12 49 27 39 75 26 60 23 04 97 05 23 45 93 55 32 36 05 32 04 09 37 44 35 95 07 77 86 47 61 101 115 81 09 43	4,7 3,4 7,2 2,2 10,6 9,8 12	,0 4,8 8,5 11,7 2,9 1,8 0,9
51-7 43 79 54 03 22 83 12 26 18 72 43 60 111 09 06 43 44 27 73 76 85 108 67 69 53 90 53 73 04 92 22 73 08 48 29 24 20 100 70 33 32 33 111	4 0,7 6,6 9,3 2,7 2,5 7,9 2,	4 8,8 2,7 5,1 7,5 4,4 8,3
51-8 20 11.0 12 65 16 7.9 60 81 05 50 67 82 22 79 42 49 51 117 0.9 07 78 117 10.0 102 120 101 94 56 73 96 83 82 42 9.0 33 7.1 11,2 18 8.9 10,2 9.9 9.2 11,8	30 16 105 106 58 88 11	,3 2,2 0,7 2,8 3,5 5,5 1,8

III. Kartierbögen der Profilansprache

Titeldaten										
Ort Solling, Forstamt Dassel, Revierförsterei Hilwartshausen, Abteilung 1025a, Gasse 25, linke Fahrspur	Rechtswert und Hochwert N 51°43,350 O 9°40,85	Datum der Aufnahme 12.08.2015	Bearbeiter Audrey Averdiek							

	Aufnahmesituation											
Vegetation Laubwald	Höhe über NN ca. 380m	Exposition SO	Neigung N3, schwach geneigt	Lage im Relief Mittelhang	Geol. Karte Fließerden aus Lösslehm über mittlerem Buntsandstein							

			-				Horiz	ontbezo	gene D	aten									
Hum 2-4	usauflage Lcm	L	Humusau	uflage O _F			Humusauf	Humusauflage O _H								Bemerkung			
-															Ah mit Kohärentgefüge				
Nr.	Horizont	Unter- grenze cm uGOK	Horizont- grenze	Boden- art	Farbe (feucht) Munsell	Skelett [%]	Carbonat- gehalt [%]	Boden- feuchte- zustand	Gefüge -form	Röhren [%]		Röhren [%]		Trocken- rohdichte	Röhre	en [%]	pH in situ	Humus [%]	Bemerkung
										<2 mm	>2 mm	g/cm ³	<2 mm	>2 mm					
1	Ah	3	eben, scharf	Lu	7,5YR 3/1	1	c3, 2-<10	ko1, fest	bro + kru + koh	<2	<2	1,4	11- 20	1-2	6,5/ 6,8	2-5			
2	Bv-Ah	6	deutlich, Taschen diffus	Lu	7,5YR 3/2	2	c1, <0,5	**	bro + klu + koh			1,5	"	"	4,9/ 5,0	2-5	graustich		
3	Bv	28	wellig, diffus	Lu	7,5YR 4/4	5	c0	"	koh]		1,6	"	"	5,2/ 4,9	<1	graustich		
4	Cv-Bv	50	"	Lu	5YR5/ 6	10	c0	"	"			1,6	3-5	"	5,2/ 5,3	55	graustich		
5	Bv-Cv	66	55	Lu	5YR4/ 4	30	c1, <0,5		"			1,8	0	0	5,4/ 5,3	**			
6	Cv	66+		Lu	5YR4/ 4	70	c1, <0,5	**				1,8	0	0	5,1/5,3				

Humusform	Bodentyp	Substrat	Bodenform	Gründigkeit
L-Mull auf geringmächtigen Ah mit vorwiegend	Braunerde	Lösslehm, Buntsandstein	Braunerde aus Lösslehm über	mittel, < 7 dm
Kohärentgefüge			mittlerem Buntsandstein	

Titeldaten										
Ort Solling Forstamt Dassel Boviorförstoroi	Rechtswert und Hochwert	Datum der Aufnahme	Bearbeiter							
Hilwartshausen, Abteilung 1025a, Gasse 25,	14 51 45,550 0 5 40,65	12.00.2013	Addrey Averdiek							
linker Randbereich										

	Aufnahmesituation											
Vegetation Laubwald	Höhe über NN ca. 380m	Exposition SO	Neigung N3, schwach geneigt	Lage im Relief Mittelhang	Geol. Karte Fließerden aus Lösslehm über mittlerem Buntsandstein							

							Horiz	ontbezo	gene D)aten							
Hum 2-4	usauflage	L	Humusau	uflage O _F			Humusauflage O _H									Bemerkung	
_															Ah mit Ko	härentgefüge	
Nr.	Horizont	Unter- grenze cm uGOK	grenze ar	Boden- art	Farbe (feucht) Munsell	e Skelett cht) [%] sell	Garbonat- gehalt [%]	t Boden- t feuchte- zustand		Röhren [%]		Trocken- rohdichte	Dui wurze [⁶	rch- elung %]	pH in situ	Humus [%]	Bemerkung
										<2 mm	>2 mm	g/cm ³	<2 mm	>2 mm			
1	Ah	2	eben, scharf	Lu	7,5YR 3/1	1	c1, <0,5	ko1, fest	kru	<2	<2	1,4	11- 20	1-2	6,5/ 6,8	2-5	
2	Bv-Ah	10	eben, deutlich	Lu	7,5YR 3/2	2	c0	"	koh]		1,4	"	"	4,9/ 5,0	2-5	
3	Bv	33	wellig, diffus	Lu	7,5YR 4/4	5	c0	"	"]		1,6		"	5,2/ 4,9	<1	
4	Cv-Bv	55	"	Lu	5YR4/ 4	10	c0]		1,6	3-5	"	5,2/ 5,3	**	
5	Bv-Cv	71	"	Lu	5YR4/ 6	30	c1, <0,5	**				1,8	0	0	5,4/ 5,3	"	
6	Cv	671+	"	Lu	5YR4/ 6	70	c1, <0,5	"	"			1,8	0	0	5,1/5,3	66	

Humusform	Bodentyp	Substrat	Bodenform	Gründigkeit
L-Mull auf geringmächtigen Ah mit vorwiegend	Braunerde	Lösslehm, Buntsandstein	Braunerde aus Lösslehm über	mittel, < 7 dm
Kohärentgefüge			mittlerem Buntsandstein	

Sensor-	Tiefenlage				Bereich		Tiefenlage Tempe-	Bereich
Nr.	WM-Sensor	Gasse	Variante	Segment	WM-Sensor	Logger-Nr.	ratur-Sensor (cm)	Temperatursensor
1	(cm) 20	28	\$50	3	М	1	20	B
2	20	20	\$50 \$50	3	M	1	20	B
3	20	27	\$20	3	S	1	20	B
4	20	27	S20	3	S	1	20	B
5	20	27	S20	3	M	1	20	B
6	20	27	S20	3	M	1	20	B
7	6	26	Referenz	3	S	2	20	M
8	6	26	Referenz	3	M	2	20	M
9	6	26	Referenz	3	В	3	6	В
10	20	26	Referenz	3	S	2	20	M
11	20	26	Referenz	3	S	2	20	М
12	20	26	Referenz	3	M	2	20	М
13	20	26	Referenz	3	М	2	20	М
14	20	26	Referenz	3	В	3	6	В
15	20	26	Referenz	3	В	3	6	В
16	20	25	S20 K	3	S	3	6	В
17	20	25	S20 K	3	S	3	6	В
18	20	25	S20 K	3	М	4	20	В
19	20	25	S20 K	3	М	4	20	В
20	20	24	S50 Kd	3	S	4	20	В
21	20	24	S50 Kd	3	S	4	20	В
22	20	24	S50 Kd	3	М	4	20	В
23	20	24	S50 Kd	3	М	4	20	В
24	20	23	S50 K	3	М	5	20	В
25	20	23	S50 K	3	М	5	20	В
26	20	31	К	3	S	5	20	В
27	20	31	К	3	S	5	20	В
28	20	31	К	3	М	5	20	В
29	20	31	К	3	М	5	20	В
30	20	32	S50 KP	3	S	6	20	В
31	20	32	S50 KP	3	S	6	20	В
32	20	32	S50 KP	3	М	6	20	В
33	20	32	S50 KP	3	М	6	20	В
34	20	33	S20	3	S	6	20	В
35	20	33	S20	3	S	6	20	В
36	20	33	S20	3	М	7	20	В
37	20	33	S20	3	М	7	20	В
38	20	34	Referenz	3	В	7	20	В
39	20	34	Referenz	3	В	7	20	В
40	6	34	Referenz	3	В	8	6	В
41	20	34	Referenz	3	М	7	20	В
42	20	34	Referenz	3	М	7	20	В
43	6	34	Referenz	3	S	8	6	В
44	6	34	Referenz	3	М	8	6	В
45	20	35	S50 P	3	М	8	6	В
46	20	35	S50 P	3	М	8	6	В
47	20	36	S20 K	3	S	9	20	В
48	20	36	S20 K	3	S	9	20	В
49	20	36	S20 K	3	М	9	20	В
50	20	36	S20 K	3	М	9	20	В
51	20	37	S50	3	М	9	20	В
52	20	37	S50	3	М	9	20	В
53	20	38	S50 P	3	М	10	20	М
54	20	38	S50 P	3	М	10	20	Μ
F								
FO	LSCIZUNE							

IV. Positionierung der WM-Sensoren. Mit M= Mittelspur, S= Fahrspur, B=Bestand

Sensor- Nr.	Tiefenlage WM-Sensor (cm)			Segment	Bereich WM-Sensor	Logger-Nr.	Tiefenlage Tempe- ratur-Sensor (cm)	Bereich Tempera- tursensors
55	20	45	К	3	S	11	20	М
56	20	45	К	3	S	11	20	М
57	20	45	К	3	М	11	20	М
58	20	45	К	3	М	11	20	М
59	20	46	S50 KP	3	S	11	20	М
60	20	46	S50 KP	3	S	11	20	М
61	20	46	S50 KP	3	М	12	20	В
62	20	46	S50 KP	3	М	12	20	В
63	20	47	S50 K	3	М	12	20	В
64	20	47	S50 K	3	М	12	20	В
65	6	48	Referenz	3	S	13	6	F
66	6	48	Referenz	3	М	13	6	F
67	6	48	Referenz	3	В	13	6	F
68	20	48	Referenz	3	S	13	6	F
69	20	48	Referenz	3	S	13	6	F
70	20	48	Referenz	3	М	13	6	F
71	20	48	Referenz	3	М	13	6	F
72	20	48	Referenz	3	В	14	20	В
73	20	48	Referenz	3	В	14	20	В
74	20	49	S50 Kd	3	S	14	20	В
75	20	49	S50 Kd	3	S	14	20	В
76	20	49	S50 Kd	3	М	14	20	В
77	20	49	S50 Kd	3	М	14	20	В

V. Positionierung und Ablesung der CO2-Sensoren (2013)

Im Jahr 2013 wurde bis zum September [CO2] nur an einer Auswahl der Rückegassen gemessen. Die vollständigere Instrumentierung der Versuchsfläche erfolgte am 4. September 2013. Im November 2013 kam es durch zunehmende Feuchtigkeit, evtl. auch freies Wasser, in den Sensorgehäuse häufig zu technischen Ausfällen, so dass die Messwerte nicht auswertbar waren.

	Start		Au	slesetermine	, gegebenenfa	alls mit Senso	oraustausch	
	17.05.	06.06.	26.06.	08.08.	04.09.	03.11.	13.11.	10.12.
Position	2013	2013	2013	2013	2013	2013	2013	2013
G28S	S13	Fehler				Fehler		n.a. Ausbau
G27S					S26v	n.a.	Ausbau	
G26S	S14 Fehler							Ausbau
G26M					S27v		Ausbau	
G26B	\$23							Ausbau
G25S					S28v	n.a.	Ausbau	
G25M					S29v			O Ausbau
G24S	\$15	Fehler				n.a.		Ausbau
G24M					S30v			O Ausbau
G23S					S33v	0	Fehler	
G23M					S34v	0	Fehler	
G31M					S40v			Ausbau
G31S					S37v			O Ausbau
G32M	S17	Fehler				n.a.		
G32S	S16	Fehler						Ausbau
G33S					S41v			O Ausbau
6356					C42			
6355		-			543V	Eshler O	Ausbau	
G36IVI		-			545V	Fenier O	Ausbau	
6305	C19 Wasser	Fablar			542V	0	Auspau	Fabler Ausbau
6375	ST9 Massel	renier						Ferlier Ausbau
6385	<u> </u>	-			546V			O Ausbau
G45IVI					S49V			O Ausbau
G455	c20	Fables			547V			O Ausbau
G46IVI	520	Fenier						Fenier Ausbau
G465	S19 Wasser		S0v	Fehler				n.a. Ausbau
G47M					551V			O Ausbau
G4/S					550v			O Ausbau
G48B	521					0		n.a. Ausbau
G48M	\$24				V			Fehler Ausbau
G48S	S22 Wasser				V			Fehler Ausbau
G49M					\$53v	0		Fehler Ausbau
G49S					S52v			O Ausbau

Dargestellt sind die Sensorpositionen, die Nummern der verwendeten Sensor-Logger-Messeinheiten und die Messzeiträume im Jahr 2013 mit:

Wasser = Eindringen von Wasser in den Sensor n.a. nicht auslesbar (bzw. nicht ausgelesen) v = vertikal eingebaut O = Oszillationen

VI. Positionierung und Ablesung der CO2-Sensoren (2014)

Im Jahr 2014 wurden Sensoren vorsorglich ausgetauscht, wenn die Luftfeuchtigkeit im Sensorgehäuse über 95% relative Luftfeuchte (rF) angestiegen war. Der alte Sensor wurde dabei vorsichtig aus dem vorgebohrten Loch herausgezogen und sofort anschließend der neue Sensor eingeführt. Das Sensorgehäuse wurde danach wieder mit Boden eingeschlämmt. In acht Fällen änderte sich mit dem Sensortausch das Niveau der [CO2]-Verlaufskurve nach unten. Diese Fälle sind mit 🌶 in Tabelle 2 gekennzeichnet

	Start				Auslesetern	nine, gegeber	nenfalls mit Sei	nsoraustausch			
	28.02.	28.03.	03.04.	17.05.	03.06.	05.07.	24.07.	08.08.	30.08.	03.10.	05.12.
Position	2014	2014	2014	2014	2014	2014	2014	2014	2014	2014	2014
G28S	S13 Fehler				S50		S12				
G27S	S14 Fehler				S13	Fehler	N S14				
G26S	S16							ک s9			
G26M	\$17				S10		S31				
G26B	\$15						S55				
G25S	S18							S15			
G25M	S20 Fehler						S1				
G24S	S21									S16	
G24M	S22 Fehler						¥\$36				
G23S	\$23										
G23M	S24				S5						
G31M	S28 Fehler									S39	
G31S	S27				S4						
G32M	S30									\$13	
G32S	S29									S41	
G33S	S31				¥\$7						
G35S	\$55		Fehler	Fehler	\$3						
G36M	\$32										
G36S	S26						\$34				
G37S	\$33					Fehler	¥\$6				
G38S	\$34	Fehler			¥\$2						
G45M	\$35				S9		\$35				
G45S	\$36		Fehler		¥\$8						
G46M	\$38				Fehler		S17 Fehler				
G46S	S37									S26	
G47M	S40									S10	
G47S	\$39							\$43			
G48B	S41							S44			
G48M	S43						≌ S24				
G48S	S42										
G49M	\$45						S27				
G49S	S44						S11				

Dargestellt sind die Sensorpositionen, die Nummern der verwendeten Sensor-Logger-Messeinheiten und die Messzeiträume im Jahr 2014 mit:

\U = Sprung nach unten in der [CO2]-Verlaufskurve mit dem neu eingebauten Sensor

Hintergrund

Die erste Auswertung der Eisenstäbe (Termin 1, 16.05.2013 – 26.06.2013) erfolgte in einer dreistufigen Kategorisierung des Berostungsgrads. Erst ab dem 2. Termin im Herbst 2013, erfolgte die anschließend beibehaltene 5-stufige Kategorisierung (Tabelle 67).

Die folgenden Betrachtungen, dienen der Abwägung, ob die 3-stufige Kategoriesierung mit der 5stufigen verglichen werden kann oder ob diese aus den Betrachtungen der Rückegassenentwicklung ausgeschlossen werden muss.

Kategorie	3-stufig	5-stufig
0	rostfreie Stäbe mit Patina und blanke Stäbe	Patina, > 90 %
1	< 1/3 Rost	Patina + Rost
		Patina > 50 % und < 90 %,
2	> 1/3 Rost	Patina + Blank, Patina > 50 % und < 90 %
3		Rost, > 50 %
4		Rost + Blank, Rost 10 -50 % , Blank 50 – 90 %
5		Blank, > 90 %

Die angegebenen Flächenanteile beziehen sich auf jeweils ein betrachtetes Stabsegment von 3 cm Länge. Zwischenstufen wurden dem dominanten Merkmal entsprechend zugeordnet.

Auswertung

Bei der 3-stufigen Kategorisierung (nur Termin 1 und 2) liegt der Betrachtungsschwerpunkt auf den oxidativen Merkmalen (Rostbildung), bei der 5-stufigen liegt er auf den reduktiven Merkmalen (Patina). Tabelle 68 zeigt die Zuordnung der 5er-Kategorie in die 3er Kategorie. Das größte Fehlerpotential hinsichtlich der Belüftungsverhältnisse liegt in der Einordnung derjenigen Kategorien, die das Merkmal "Blank" enthalten (Kat. 2, 4, 5). Blanke, nicht berostete Bereiche der 5er-Stufung werden in der 3er-Stufung zu den reduzierenden Bedingungen und nicht wie nach Owens et al (2007) zu den oxidierenden Bodenverhältnissen eingeordnet.

Tabelle 68: Harmonisierung der Bewer	tungskategorien
--------------------------------------	-----------------

3er Kategorie	3-stufig	5-stufig	entspricht 5er Kategorie
0	rostfreie	Patina	0 + 5
	Stäbe mit Patina	> 90 %	
	und blanke Stäbe	Blank > 90 %	
1	< 1/3 Rost	Patina + Rost	1 + 2 + 4
		Patina > 50 % und < 90 %	
		Patina + Blank	
		Patina > 50 % und < 90 %	
		Rost + Blank	
		Rost 10 -50 % , Blank 50 – 90 %	
2	> 1/3 Rost	Rost	3
		> 50 %	

Abbildung 91 verdeutlicht, dass die Kategorie 5 "Blank" mit einem Stababschnittsanteil von ca. 5 % in den Herbstterminen 2013 und 2014 eine untergeordnete Rolle spielt. Damit kann der Fehler bei der

Auswertung des ersten Messtermins, durch den Anteil der blanken Stäbe (oxidative Bedingung) in der Kategorie 0 (reduzierende Bedingungen), als gering bewertet werden.

Die Kategorie 4 "Rost + Blank" ist im Jahr 2013 im Bestand mit über 90 %, in der Mittelspur mit ca. 80 % und in der Fahrspur mit ca. 30 % Stabanteilen vertreten. Im Jahr 2014 sind diese Anteile um jeweils ca. 50 % gemindert (Abbildung 48). Auf Grund des langen Winters im Jahr 2013 und der stetigen Niederschläge bis in den Juli (Abbildung 93) wird jedoch davon ausgegangen, dass das Merkmal "Blank" im Frühjahr 2013 generell kaum vorgekommen ist.

Die Abbildung 92 zeigt, dass die Kategorie "< 1/3 Rost", welche die Kategorie "Rost + Blank" und "Patina + Blank" enthält, ca. 20 % im Bestand und in der Mittelspur ausmachen. In der Fahrspur liegt der Anteil bei ca. 10 %. Auch diese Anteile sind insgesamt als niedrig zu bewerten.

Ergebnis

Der Fehler durch die Einordnung der blanken Stababschnitte in die Kategorie 0 der 3er-Stufung wird als gering eingestuft. Die Ergebnisse der 3er-Stufung werden somit in die Gesamtauswertung des Feldversuchs miteinbezogen.

Abbildung 91: Häufigkeit der Oberflächenkategorien (5er-Stufung)

Dargestellt ist die Häufigkeit der Stababschnittkategorien an den Herbstterminen in 2013 und 2014 (5er-Stufung, Termin 3, Termin 5).

Abbildung 92: Auswirkung der 3-Einstufung auf die Bereiche der

Dargestellt ist das Ergebnis der ersten Eisenstabauswertung (3er-Stufung, Termin 1) vom 16.06.2013 bis zum 26.06.2013. Mit kat. 0 = kein Rost; Kat. 1 = < 1/3 Rost, Kat. 2 = > 1/3 Rost

Abbildung 93: Klimadaten 2013 und 2014 im raum Solling-Vogler

Quelle: <u>https://www.meteoblue.com/de/wetter/vorhersage/archive/naturpark-solling-vogler_deutschland_2831514</u> (Zugriff am 03.07.2015)

VIII. Einfluss der Verweilzeit im Boden auf die Auswertung der Eisentäbe

Abbildung 94 zeigt, dass eine Ausdehnung der Verweilzeit der Eisenstäbe im Boden über länger als vier Wochen nicht zu einem stärkeren Verrostungsgrad geführt hat. Eisenstäbe, die während der sommerlichen Trockenphase Juli-August 2013 (Termin 2) vergraben waren, zeigten dagegen eine deutlich stärkere Verrostung, als die im Frühjahr oder Herbst exponierten Eisenstäbe.

 \rightarrow eventl. in Ergebnisteil: Auffällig ist die Ausprägung der reduzierenden Verhältnisse in der Mittelspur an T2 und T5, welche an diesen Terminen stärker ist als im Bestand und der Fahrspur. Theorie: Baumwurzeln wachsen von außen ein und endziehen so der Fahrspur noch vor der Mittelspur das Wasser.

Termin	T1	T2	Т3	T4	T5
Tage	55	72	43	101	43
mm	224	104	73	248	66
mm/Tag	4,1	1,4	1,7	2,5	1,5
Jahreszeit	Frühjahr '13	Sommer '13	Herbst '13	Frühjahr ´14	Herbst ´14

Tabelle 69: Niederschläge während der Expositionszeit der Eisenstäbe

Dargestellt sind die summierten Niederschläge 14 Tage vor der Eisenstabexposition zusätzlich zum Expositionszeitraum. Niederschlagsereignisse < 2 mm wurden nicht berücksichtigt. Quelle:

<u>http://www.wetteronline.de/wetterdaten/alfeld?pcid=pc_rueckblick_data&gid=09442&pid=p_rueckblick_diagram&sid=Sta</u> <u>tionHistory&iid=09442¶id=RR24&period=12&month=10&year=2014</u> (Zugriff 03.06.2015)

Abbildung 94: Auswirkung der Expositionsdauer auf die Kat. 0 der Eisenstabmethode

Dargestellt ist der Anteil von 3 cm-Abschnitten ohne Glanz und Rost (Kat 0 "Patina") an Eisenstäben im Feldversuch Solling in Abhängigkeit von der Expositionsdauer zu verschiedenen Jahreszeiten. Anzahl der Stäbe bezieht sich jeweils auf den Bestand. In Spur und Mitte war außer während T2 die doppelte Anzahl. Termin 3 und Termin 5 verlaufen beide über einen Zeitraum von 29 Tagen, sind aber aus Gründen der besseren Darstellung in der Abbildung um 3 Tage versetzt worden.

Ermittlung der Konsistenzgrenzen (Atterberg'sche Grenzen) Konsistenzgrenze Fließgrenze wL Ausrollgrenze w_P 34 21 28 Behälter - Nr. 10 12 18 26 Zahl der Schläge (maßgeblich) 30 25 20 15 feuchte Probe + Behälter 16,82 16,84 15 16,66 13,27 13,14 13,22 trockene Probe + Behälter 13,32 14,36 14,68 14,3 12,67 12,68 12,67 Behälter 10,49 10,54 11,18 10,22 10,23 10,69 10.3 Masse Wasser 1,68 2,3 2,14 2,54 0,6 0,46 0,55 Masse Probe 4,08 1,99 2,83 3,82 3,5 2,44 2,37 0,602 0,611 0,623 0,231 Wassergehalt 0,594 0,246 0,232 Ausrollgrenze (Mittelwert) 0,236 Graphische Ermittlung der Fließgrenze Zusammenstellung der Versuchsergebnisse vorhandener Wassergehalt w 0,341 Fließgrenze 0,606 W_L Ausrollgrenze WP 0,236 w ₩ / R Schrumpfgrenze* 0,144 WS 0,650 Darstellung des plastischen Bereichs 0.630 10 20 30 40 50 60 70 80 0,610 w Berechnungen 0,590 Plastizitätszahl 0,370 $I_P = W_L - W_P$ Konsistenzzahl 0,570 $I_{C} = (W_{I} - W) / I_{P}$ 0,717 Benennung der Konsistenz 0,550 15 20 30 35 40 Konsistenzzahl I_C Konsistenz Anzahl der Schläge flüssig unter 0,0 0,0 bis 0,5 breiig 0,5 bis 0,75 weich 0,75 bis 1,0 steif halbfest / fest über 1,0 Ermittlung der Bodenart nach DIN 18196 Bemerkungen: 0,5 Bauvorhaben: Anlage Datum IP RüWoLa 06.2014 26 unten 0,4 0,3 w_{Konsistenz} vom 30.06.2014 тм OT UA 0,2 I ÚМ I 0,1 00 0,07 SU 0.04 I I 0.8 W * Anmerkung zur Schrumpfgrenze: LV - ermittelt durch Laborversuch R - näherungsweise nach Rechnung Bodenart: TA $w_s = w_L - (1,25 \times I_P)$

Ermittlung der Konsistenzgrenzen (Atterberg'sche Grenzen) Konsistenzgrenze Fließgrenze wL Ausrollgrenze w_P 34 21 28 Behälter - Nr. 3 10 18 26 Zahl der Schläge (maßgeblich) 39 30 23 16 16,44 16,21 15,95 feuchte Probe + Behälter 16,6 12,95 13,36 13,28 trockene Probe + Behälter 14,37 14,11 14,6 14,34 12,44 12,88 12,74 Behälter 10,63 10,48 11,1 10,2 10,21 10,66 10,27 Masse Wasser 1,84 1,84 1,84 2,26 0,51 0,48 0,54 Masse Probe 2,22 3,74 3,63 4,14 2,47 3,5 2,23 0,492 0,507 0,526 0,546 0,229 0,216 Wassergehalt 0,219 Ausrollgrenze (Mittelwert) 0,221 Graphische Ermittlung der Fließgrenze Zusammenstellung der Versuchsergebnisse vorhandener Wassergehalt w 0,322 Fließgrenze 0,51 W_L Ausrollgrenze WP 0,221 w ₩ / R Schrumpfgrenze* 0,149 WS 0,570 Darstellung des plastischen Bereichs 0,550 10 20 30 40 50 60 70 80 0,530 w Berechnungen 0.510 Plastizitätszahl 0,289 $I_P = W_L - W_P$ Konsistenzzahl 0,490 $I_{C} = (W_{I} - W) / I_{P}$ 0,651 Benennung der Konsistenz 0,470 15 20 25 30 35 40 Konsistenzzahl I_C Konsistenz Anzahl der Schläge unter 0,0 flüssig 0,0 bis 0,5 breiig 0,5 bis 0,75 weich 0,75 bis 1,0 steif halbfest / fest über 1,0 Ermittlung der Bodenart nach DIN 18196 Bemerkungen: 0,5 Bauvorhaben: Anlage Datum IP RüWoLa 06.2014 38 oben 0,4 0,3 w_{Konsistenz} vom 30.06.2014 ТΜ ÚA UA 0,2 I Uм I 0,1 00 0,07 Sι 0.04 I Т 0.8 W * Anmerkung zur Schrumpfgrenze: LV - ermittelt durch Laborversuch R - näherungsweise nach Rechnung Bodenart: TM / TA $w_s = w_L - (1,25 \text{ x } I_P)$

Ermittlung der Konsistenzgrenzen (Atterberg'sche Grenzen) Konsistenzgrenze Fließgrenze wL Ausrollgrenze w_P 34 21 28 Behälter - Nr. 10 12 18 26 Zahl der Schläge (maßgeblich) 40 31 24 17 16,34 feuchte Probe + Behälter 16,16 15,88 16,6 13,88 14,24 12.74 trockene Probe + Behälter 13,98 13,72 14,23 13,98 13,06 13,47 12,21 Behälter 10,65 10,49 11,11 10,21 10,23 10,7 10,29 Masse Wasser 0,53 2,18 2,16 2,11 2,62 0,82 0,77 Masse Probe 3,12 3,77 3,33 3,23 2,77 1,92 2,83 0,655 0,669 0,676 0,695 0,278 0,276 Wassergehalt 0,290 Ausrollgrenze (Mittelwert) 0,281 Graphische Ermittlung der Fließgrenze Zusammenstellung der Versuchsergebnisse vorhandener Wassergehalt w 0,252 Fließgrenze 0,674 W_L Ausrollgrenze WP 0,281 w ₩ / R Schrumpfgrenze* 0,183 WS 0,720 Darstellung des plastischen Bereichs 0.700 10 20 30 40 50 60 70 80 0,680 w Berechnungen 0,660 Plastizitätszahl 0,393 $I_P = W_L - W_P$ Konsistenzzahl 0,640 $I_{C} = (W_{I} - W) / I_{P}$ 1,074 Benennung der Konsistenz 0,620 15 20 25 30 35 40 Konsistenzzahl I_C Konsistenz Anzahl der Schläge flüssig unter 0,0 0,0 bis 0,5 breiig 0,5 bis 0,75 weich 0,75 bis 1,0 steif über 1,0 halbfest / fest Ermittlung der Bodenart nach DIN 18196 Bemerkungen: 0,5 Bauvorhaben: Anlage Datum IP RüWoLa 06.2014 G 48 oben 0,4 0,3 w_{Konsistenz} vom 30.06.2014 тм 0,2 I ÚМ I 0,1 00 0,07 SU 0.04 I I 0.8 W * Anmerkung zur Schrumpfgrenze: LV - ermittelt durch Laborversuch R - näherungsweise nach Rechnung Bodenart: TA $w_s = w_L - (1,25 \times I_P)$

Ermittlung der Konsistenzgrenzen (Atterberg'sche Grenzen) Konsistenzgrenze Fließgrenze wL Ausrollgrenze w_P 2 23 24 32 Behälter - Nr. 1 13 29 Zahl der Schläge (maßgeblich) 38 27 30 18 feuchte Probe + Behälter 15,53 15,39 17.73 17,35 12,98 19,52 13,16 trockene Probe + Behälter 13,74 13,6 15,53 15,6 12,49 19,15 12,71 Behälter 10,22 10,21 11,93 11,72 9,94 17,26 10,43 Masse Wasser 1,79 1,79 1,82 2,13 0,49 0,37 0,45 Masse Probe 3,52 3,39 3,88 2,55 1,89 2,28 3,6 0,509 0,528 0,506 0,549 0,196 0,197 Wassergehalt 0,192 Ausrollgrenze (Mittelwert) 0,195 Graphische Ermittlung der Fließgrenze Zusammenstellung der Versuchsergebnisse vorhandener Wassergehalt w 0,214 Fließgrenze 0,529 W_L Ausrollgrenze WP 0,195 w ₩ / R Schrumpfgrenze* 0,112 WS 0,580 Darstellung des plastischen Bereichs 0,560 10 30 40 50 60 70 80 0,540 w Berechnungen 0,520 Plastizitätszahl 0,334 $I_P = W_L - W_P$ Konsistenzzahl 0,500 $I_{C} = (W_{I} - W) / I_{P}$ 0,943 Benennung der Konsistenz 0,480 15 20 25 30 35 40 Konsistenzzahl I_C Konsistenz Anzahl der Schläge flüssig unter 0,0 0,0 bis 0,5 breiig 0,5 bis 0,75 weich 0,75 bis 1,0 steif halbfest / fest über 1,0 Ermittlung der Bodenart nach DIN 18196 Bemerkungen: 0,5 Bauvorhaben: Anlage Datum IP RüWoLa 06.2014 48 unten 0,4 0,3 w_{Konsistenz} vom 30.06.2014 тм ÚA UA 0,2 I ŨМ I 0,1 00 0,07 Sι 0.04 I Т 0.8 W * Anmerkung zur Schrumpfgrenze: LV - ermittelt durch Laborversuch R - näherungsweise nach Rechnung Bodenart: TA $w_s = w_L - (1,25 \times I_P)$

X. Berechnungen zum Schrumpfverhalten

Die Stechzylinder (865 cm³) wurden ca. 2 m unterhalb und oberhalb des Versuchsabschnitts der Gassen G26, G38 und G48 aus der Mittelspur, im Tiefenbereich 5 – 25 cm uGOK, entnommen.

Gasse 26 oben

Ausgangswerte	V = 864,11 cm ³ (Ausstechzylinder)
Feuchtmasse	$m_f = 1536,1 \text{ g}$
Wassergehalt	$w = 0,284 \equiv 28,4\%$
Korndichte	$\varrho_s = 2,58 \text{ g/cm}^3$ (Laborversuch)
Konsistenz	weich $[I_c = (w_l - w_n) / I_{p]} = 0,679)$
Feuchtdichte	$\varrho = m_f / V = 1536,1 / 864,11 = 1,778 \text{ g/cm}^3 \text{ (t/m}^3)$
Trockendichte	$\varrho_d = \varrho / (1 + w) = 1,778 / (1 + 0,284) = 1,384 \text{ g/cm}^3$
Wassergehalt als Volumena	nteil $n_w = w \times m_f / [(1 + w) \times V]$
	$n_w = 0.284 \times 1536.1 / [(1 + 0.284) \times 864.11] = 0.464 \equiv 46.4\%$
Porenanteil	$n = 1 - m_f / [V x \varrho_s (1 + w)]$
	n = 1 − 1595 / [862 x 2,78 (1 + 0,39)] = 0,521 ≡ 52,1%

Schrumpfverhalten Probe 26 oben

Abnahme des Porenanteils	$\Delta \mathbf{n} = n_1 - n_2 = 0,521 - 0,311 = 0,210 \equiv \mathbf{21,0\%}$
Volumen nach Schrumpfung	V _{neu} = V ₁ - ∆n x V ₁ = 1000 - 0,210 x 1000 = 0,790 ≡ 790 cm ³
Kantenlänge Schrumpfung	$a_{neu} = {}^{3}\sqrt{V_{neu}} = {}^{3}\sqrt{790} \equiv 9,24 \text{ cm}$
lineare Schrumpfung (absolut)	$\Delta a = a_1 - a_{neu} = 10,0 - 9,24 \equiv 0,76 \text{ cm}$
lin. Schrumpfung (Verhältnis)	s = $\Delta a : a_1 = 0,76 : 10,0 \equiv 7,6\%$

Gasse 26 unten

Ausgangswerte	V = 865,04 cm ³ (Ausstechzylinder)
Feuchtmasse	$m_f = 1407,4 \text{ g}$
Wassergehalt	$w = 0,341 \equiv 34,1\%$
Korndichte	$\rho_s = 2,48 \text{ g/cm}^3$ (Laborversuch)
Konsistenz	weich $[I_c = (w_l - w_n) / I_{p]} = 0,714)$
Feuchtdichte	$\varrho = m_f / V = 1404,7 / 865,04 = 1,627 \text{ g/cm}^3 \text{ (t/m}^3)$
Trockendichte	$\varrho_d = \varrho / (1 + w) = 1,627 / (1 + 0,341) = 1,213 \text{ g/cm}^3$
Wassergehalt als Volumena	nteil $n_w = w \times m_f / [(1 + w) \times V]$
	n _w = 0,341 × 1407,4 / [(1 + 0,341) × 865,04] = 0,414 ≡ 41,4%
Porenanteil	$n = 1 - m_f / [V x \varrho_s (1 + w)]$
	n = 1 − 1407,4 / [865,04 × 2,48 (1 + 0,341)] = 0,511 ≡ 51,1%

Schrumpfverhalten Probe 26 unten

Abnahme des Porenanteils	$\Delta n = n_1 - n_2 = 0,414 - 0,344 = 0,070 \equiv 7,0\%$
Volumen nach Schrumpfung	V_{neu} = V ₁ - ∆n x V ₁ = 1000 - 0,07 x 1000 = 0,930 ≡ 930 cm ³
Kantenlänge Schrumpfung	$a_{neu} = {}^{3}\sqrt{V_{neu}} = {}^{3}\sqrt{930} \equiv 9,76 \text{ cm}$
lineare Schrumpfung (absolut)	$\Delta a = a_1 - a_{neu} = 10,0 - 9,76 \equiv 0,24 \text{ cm}$
lin. Schrumpfung (Verhältnis)	s = Δa : $a_1 = 0,24$: 10,0 = 2,4%

Gasse 38 oben

Ausgangswerte	V = 864,54 cm ³ (Ausstechzylinder)			
Feuchtmasse	$m_f = 1304.9 \text{ g}$			
Wassergehalt	$w = 0,322 \equiv 32,2\%$			
Korndichte	$\varrho_s = 2,55 \text{ g/cm}^3 \text{ (Laborversuch)}$			
Konsistenz	weich $[I_c = (w_l - w_n) / I_{p]} = 0,637)$			
Feuchtdichte	$\varrho = m_f / V = 1304,9 / 864,54 = 1,509 \text{ g/cm}^3 \text{ (t/m}^3)$			
Trockendichte	$\varrho_d = \varrho / (1 + w) = 1,509 / (1 + 0,322) = 1,141 \text{ g/cm}^3$			
Wassergehalt als Volumena	teil $n_w = w \times m_f / [(1 + w) \times V]$			
	$\textbf{n_w}$ = 0,322 x 1304,9 / [(1 + 0,322) x 864,54] = 0,368 \equiv 36,8%			
Porenanteil	$n = 1 - m_f / [V x \varrho_s (1 + w)]$			
	n = 1 - 1304,9 / [864,54 x 2,55 (1 + 0,322)] = 0,552 = 55,2%			

Schrumpfverhalten Probe 38 oben

Abnahme des Porenanteils	$\Delta \bm{n} = n_1 - n_2 = 0,552 - 0,408 = 0,144 \equiv \bm{14,\!4\%}$
Volumen nach Schrumpfung	V _{neu} = V ₁ - ∆n x V ₁ = 1000 - 0,144 x 1000 = 0,856 ≡ 856 cm ³
Kantenlänge Schrumpfung	$a_{neu} = {}^{3}\sqrt{V_{neu}} = {}^{3}\sqrt{856} \equiv 9,49 \text{ cm}$
lineare Schrumpfung (absolut)	$\Delta a = a_1 - a_{neu} = 10,0 - 9,49 \equiv 0,51 \text{ cm}$
lin. Schrumpfung (Verhältnis)	s = $\Delta a : a_1 = 0,51 : 10,0 \equiv 5,1\%$

Gasse 38 unten

V = 865,12 cm ³ (Ausstechzylinder)				
m _f = 1610,6 g				
$w = 0,231 \equiv 23,1\%$				
$\varrho_s = 2,57 \text{ g/cm}^3 \text{ (Laborversuch)}$				
steif $[I_c = (w_l - w_n) / I_{p]} = 0.87)$				
$\varrho = m_f / V = 1610,6 / 865,12 = 1,862 \text{ g/cm}^3 \text{ (t/m}^3)$				
$\varrho_d = \varrho / (1 + w) = 1,652 / (1 + 0,231) = 1,513 \text{ g/cm}^3$				
nteil $n_w = w \times m_f / [(1 + w) \times V]$				
n _w = 0,231 x 1610,6 / [(1 + 0,231) x 865,122] = 0,349 = 34,9%				
$n = 1 - m_f / [V x \varrho_s (1 + w)]$				
n = 1 − 1610,6 / [865,122 x 2,57 (1 + 0,231)] = 0,411 ≡ 41,1%				
r				

Schrumpfverhalten Probe 38 unten

Abnahme des Porenanteils	$\Delta n = n_1 - n_2 = 0,411 - 0,276 = 0,135 \equiv 13,5\%$
Volumen nach Schrumpfung	V_{neu} = V ₁ - ∆n x V ₁ = 1000 - 0,135 x 1000 = 0,865 ≡ 865 cm ³
Kantenlänge Schrumpfung	a_{neu} = $^{3}\sqrt{V_{neu}}$ = $^{3}\sqrt{865}$ \equiv 9,53 cm
lineare Schrumpfung (absolut)	$\Delta \mathbf{a} = \mathbf{a}_1 - \mathbf{a}_{neu} = 10,0 - 9,53 \equiv 0,47 \ cm$
lin. Schrumpfung (Verhältnis)	s = $\Delta a : a_1 = 0,47 : 10,0 \equiv 4,7\%$

Gasse 48 oben

Ausgangswerte	V = 865,12 cm ³ (Ausstechzylinder)				
Feuchtmasse	m _f = 15	584,7 g			
Wassergehalt	w = 0,2	252 ≡ 25,2%			
Korndichte	$Q_{s} = 2,4$	48 g/cm ³ (Laborversuch)			
Konsistenz	halbfe	st / fest $[I_c = (w_l - w_n) / I_{p]} = 1,076)$			
Feuchtdichte	$\varrho = m_f$	/ V = 1584,7 / 865,12 = 1,832 g/cm³ (t/m³)			
Trockendichte	$\varrho_d = \varrho$ /	$f(1 + w) = 1,832 / (1 + 0,252) = 1,463 \text{ g/cm}^3$			
Wassergehalt als Volumena	nteil	$n_{w} = w \times m_{f} / [(1 + w) \times V]$			
		$\textbf{n_w}$ = 0,252 x 1584,7 / [(1 + 0,252) x 865,12] = 0,369 \equiv 36,9%			
Porenanteil		$n = 1 - m_f / [V \times \varrho_s (1 + w)]$			
		n = 1 − 1584,7 / [865,12 x 2,48 (1 + 0,252)] = 0,410 ≡ 41,0%			

Schrumpfverhalten Probe 48 oben

Abnahme des Porenanteils	$\Delta n = n_1 - n_2 = 0,410 - 0,261 = 0,149 \equiv 14,9\%$
Volumen nach Schrumpfung	V_{neu} = V ₁ - ∆n x V ₁ = 1000 - 0,371 x 1000 = 0,851 ≡ 851 cm ³
Kantenlänge Schrumpfung	a _{neu} = ³ √ V _{neu} = ³ √851 ≡ 9,48 cm
lineare Schrumpfung (absolut)	$\Delta a = a_1 - a_{neu} = 10,0 - 9,48 \equiv 0,52 \text{ cm}$
lin. Schrumpfung (Verhältnis)	s = ∆a : a ₁ = 0,52 : 10,0 ≡ 5,2%

Gasse 48 unten

Ausgangswerte	V = 864,83 cm ³ (Ausstechzylinder)				
Feuchtmasse	m _f = 1631,1 g				
Wassergehalt	$w = 0,214 \equiv 21,4\%$				
Korndichte	$q_s = 2,57 \text{ g/cm}^3 \text{ (Laborversuch)}$				
Konsistenz	steif $[I_c = (w_l - w_n) / I_{p]} = 0,943)$				
Feuchtdichte	$g = m_f / V = 1631,1 / 864,83 = 1,886 \text{ g/cm}^3 \text{ (t/m}^3)$				
Trockendichte	$q_d = q / (1 + w) = 1,886 / (1 + 0,214) = 1,553 \text{ g/cm}^3$				
Wassergehalt als Volumena	teil $n_w = w \times m_f / [(1 + w) \times V]$				
	$n_w = 0,214 \times 1631,1 / [(1 + 0,214) \times 864,83] = 0,333$ 33,3%	≡			
Porenanteil	$n = 1 - m_f / [V \times \varrho_s (1 + w)]$				
	n = 1 - 1631,1 / [864,83 x 2,57 (1 + 0,214)] = 0,396 39,6%	≡			

Schrumpfverhalten Probe 48 unten

Abnahme des Porenanteils	$\Delta n = n_1 - n_2 = 0,396 - 0,266 = 0,130 \equiv 13,0\%$
Volumen nach Schrumpfung	V _{neu} = V ₁ - ∆n x V ₁ = 1000 - 0,130 x 1000 = 0,870 ≡ 870 cm ³
Kantenlänge Schrumpfung	$a_{neu} = {}^{3}\sqrt{V_{neu}} = {}^{3}\sqrt{870} \equiv 9,55 \text{ cm}$
lineare Schrumpfung (absolut)	$\Delta a = a_1 - a_{neu} = 10,0 - 9,55 \equiv 0,45 \text{ cm}$
lin. Schrumpfung (Verhältnis)	s = $\Delta a : a_1 = 1,43 : 10,0 \equiv 4,5\%$

XI. Erfassung der Fahrspuren

Reihe	Gasse	Maßnahme	Stubben	S1	S2	S3	S4	Mittelwert (cm uGOK)	Klasse (1 - 5)
1	28	S50.a	m	15	13	8	8	11	3
2	27	S20.a	0	16	16	10	10	13	3
3	26	Ref.a	m	19	21	17	14	18	4
4	25	S20K.a	0	19	21	19	16	19	4
5	24	S50Kd.a	m	24	17	15	15	17	4
6	23	S50K.a	0	22	26	35	25	27	5
7	31	K.a	m	22	15	0	0	9	2
8	32	S50KP.a	m	9	9	9	9	9	2
9	33	S20.b	0	30	31	30	18	27	5
10	34	Ref.b	m	10	10	10	10	10	3
11	35	S50P.a	m	8	16	16	16	14	3
12	36	S20K.b	0	9	13	17	17	14	3
13	37	S50.b	m	20	24	14	27	21	5
14	38	S50P.b	m	21	21	21	21	21	5
15	45	K.b	0	8	8	8	8	8	2
16	46	S50KP.b	m	30	30	30	30	30	5
17	47	S50K.b	m	19	23	17	17	19	4
18	48	Ref.c	0	20	23	23	20	22	5
19	49	S50Kd.b	m	20	22	27	17	22	5

Tabelle 70: Erfassung der Fahrspurtiefe

Klassenbildung der Spurtiefe (cm uGOK): 1 = < 5; 2 = 5 - < 10; 3 = 10 - < 15; 4 = 15 - <20; 5 = >20

Mit S = Segment 1 – 4, Angaben in cm uGOK; m = mit Stubben; o = ohne Stubben. Rot = Spurtiefe von 20 cm auf 90 % der Rückegasse überschritten. Orange = Spurtiefe von 20 cm auf 75 % der Rückegasse überschritten. Gelb = Fahrspurtiefen nahe 20 cm liegen vor.
Reihe	Gasse	Maßnahme	Stubben	S1	S2	S3	S4	Mittelwert (cm²)	Klasse (1 - 5)
1	28	S50.a	m	280	45	150	150	156	4
2	27	S20.a	0	225	96	32	32	96	3
3	26	Ref.a	m	225	96	32	32	96	3
4	25	S20K.a	0	640	640	315	140	434	5
5	24	S50Kd.a	m	250	400	315	315	320	5
6	23	S50K.a	0	480	270	630	486	467	5
7	31	K.a	m	180	0	0	0	45	2
8	32	S50KP.a	m	0	0	0	0	0	1
9	33	S20.b	0	300	300	375	200	294	4
10	34	Ref.b	m	0	0	0	0	0	1
11	35	S50P.a	m	0	0	0	0	0	1
12	36	S20K.b	0	0	120	120	0	60	2
13	37	\$50.b	m	200	240	180	187	202	4
14	38	S50P.b	m	90	90	90	90	90	3
15	45	K.b	0	0	0	0	0	0	1
16	46	S50KP.b	m	80	80	80	80	80	3
17	47	S50K.b	m	300	364	160	160	246	4
18	48	Ref.c	0	200	250	250	120	205	4
19	49	S50Kd.b	m	250	250	250	160	228	4

XII. Erfassung der Wulstfläche Tabelle 71: Erfassung der Wulstfläche

Klassenbildung der Wulstausprägung (cm²): 1 = 0 in allen Segmenten; $2 = 0 - \langle 80; 3 = 80 - \langle 150; 4 = 150 - \langle 300; 5 = \rangle 300$. Mit S = Segment 1 - 4, Angaben in cm uGOK; m = mit Stubben; o = ohne Stubben. Rot = Spurtiefe von 20 cm auf 90 % der Rückegasse überschritten. Orange = Spurtiefe von 20 cm auf 75 % der Rückegasse überschritten. Gelb = Fahrspurtiefen nahe 20 cm liegen vor.

XIII. Kalkulation der Wulstquerschnittsfläche

Um die Menge des verlagerten Bodenmaterials bei der Entstehung der Bodenwulste abschätzen und zwischen den einzelnen Gassen vergleichen zu können, wurde diese Anhand der Basisbreite des Wulstes (Abbildung 95; Linie a) und seiner Höhe (Abbildung 95; Linie b) abgeschätzt. Linie a wurde auf Höhe der Geländekante gemessen. Da die Form des Wulstes häufig der einer Elipse entsprach, wurde stark vereinfachend folgende Formel angewendet:

$A_{Wulst} = a * b.$

Abbildung 95: Kalkulation der Wulstquerschnittsfläche

Probenah- me	\$20 a	520 h	S20K a	520K h	S50 a	550 h	\$50Kd a	550Kd h	\$50K a	550K b	S50KP a	S50KP.	S50P.	S50P.	Kalk.	Kalk.	Ref.	Ref.	Ref c	VO
	520.u	520.5	52010.0	52010.5	550.u	550.5	55614.4	55010.0	5501.4	5561.6	550101.0	b	a	D	a	D	a 20	20	22	
02 00 2012	10 5	21.0	20.1	20.6	110	11 0	2/ 0	28 O	25 1	27.0	27.0	52 /	110	210	15 5	20.0	39,	29, 1	23,	24
05.05.2015	40,5	21,0	23,1	50,0	44,5	41,5	24,5	56,0	23,1	57,0	57,5	55,4	44,0	54,5	45,5	55,5		10	21	20
17.10.2014	37,9	20,2	27,5	39,0	39,7	42,3	31,8	28,8	26,4	35,1	40,6	37,2	39,4	38,8	41,9	31,7	46, 7	46, 7	31, 9	20
Mittelstreifen	ŕ	,		,	,	,	,	,	,	,		,	, ,	,	'	,	I			
Probenab-			1		l						1		l		I		Ι.			
me	S20.a	S20.b	S20K.a	S20K.b	S50.a	S50.b	S50Kd.a	S50Kd.b	S50K.a	S50K.b	S50KP.a	S50KP. b	S50P. a	S50P. b	Kalk. a	Kalk. b	Ref. a	Ref. b	Ref.c	vq
												~	~	~	<u> </u>	~	3/1	20	27	27
03.09.2013	29,7	27,9	48,5	29,5	34,3	41,6	53,9	51,0	37,8	49,1	39,6	49,2	39,0	70,9	37,9	36,7	9	30, 7	27, 9	%
	,	,	,	,	,	,	,	,	,	,	,	,	ŕ	,		,	41	37.	49	12
17.10.2014	35,5	35,1	35,9	33,1	40,5	45,0	45,0	40,0	39,3	48,1	48,1	46,8	36,6	45,3	40,2	37,6	7	7	6	%
			I		1						I		I		I		I			I
grav. Wasserg	grav. Wassergehalt-Mittelwerte in 10-20 cm Tiefe in der Fahrspur und im Mittelstreifen. Jahre 2013 und 2014																			
Spur																				
Probenah-													SE OD		Kalk	Kalk	Dof	Dof		1
me	S20.a	S20.b	S20K.a	S20K.b	S50.a	S50.b	S50Kd.a	S50Kd.b	S50K.a	S50K.b	S50KP.a	550КР. b	зэор. а	550Р. b	а	как. b	a Rei.	b	Ref.c	VQ
																	25.	18.	17.	15
03.09.2013	24,9	16,8	23,1	19,1	22,4	29,0	19,5	23,4	19,4	21,7	23,8	26,2	24,5	19,3	23,5	20,4	8	3	6	%
																	26,	21,	20,	31
17.10.2014	21,6	52,6	20,5	22,1	24,2	23,1	26,0	20,6	17,7	23,0	20,7	21,5	23,0	22,9	21,8	21,3	3	3	3	%
Mittelstreifen	I		I		I		I		l		I		I		I		I			
Probenah-												SEOKD	SEOD	SEOD	Kalk	Kalk	Bof	Pof		
me	S20.a	S20.b	S20K.a	S20K.b	S50.a	S50.b	S50Kd.a	S50Kd.b	S50K.a	S50K.b	S50KP.a	550КР. b	a	зэог. b	a	b	a	b	Ref.c	VQ

XIV. grav. Wassergehalt-Mittelwerte in 0-5 cm Tiefe in der Fahrspur und im Mittelstreifen, Jahre 2013 und 2014 Spur

03.09.2013	18,5	16,8	22,7	18,9	22,0	27,9	26,9	28,8	19,8	22,1	23,1	23,3	23,8	28,5	21,1	19,5	20, 6	18, 2	17, 5	17 %
17.10.2014	23,6	24,5	25,2	24,5	22,7	25,0	27,9	24,5	24,6	25,4	27,5	23,2	29,5	24,5	31,3	23,3	26, 8	37, 9	28, 7	14 %

grav. Wassergehalt-Mittelwerte in 30-40 cm Tiefe in der Fahrspur und im Mittelstreifen, Jahre 2013 und 2014

Spur

Probenah- me	S20.a	S20.b	S20K.a	S20K.b	S50.a	S50.b	S50Kd.a	S50Kd.b	S50K.a	S50K.b	S50KP.a	S50KP. b	S50P. a	S50P. b	Kalk. a	Kalk. b	Ref. a	Ref. b	Ref.c	VQ
03.09.2013	24,9	16,8	23,1	19,1	22,4	29,0	19,5	23,4	19,4	21,7	23,8	26,2	24,5	19,3	23,5	20,4	25, 8	18, 3	17, 6	15 %
17.10.2014	21,6	52,6	20,5	22,1	24,2	23,1	26,0	20,6	17,7	23,0	20,7	21,5	23,0	22,9	21,8	21,3	26, 3	21, 3	20, 3	31 %
Mittelstreifen	littelstreifen																			
Probenah- me	S20.a	S20.b	S20K.a	S20K.b	S50.a	\$50.b	S50Kd.a	S50Kd.b	S50K.a	S50K.b	S50KP.a	S50KP. b	S50P. a	S50P. b	Kalk. a	Kalk. b	Ref. a	Ref. b	Ref.c	VQ
03.09.2013	18,5	16,8	22,7	18,9	22,0	27,9	26,9	28,8	19,8	22,1	23,1	23,3	23,8	28,5	21,1	19,5	20, 6	18, 2	17, 5	17 %
17.10.2014	23,6	24,5	25,2	24,5	22,7	25,0	27,9	24,5	24,6	25,4	27,5	23,2	29,5	24,5	31,3	23,3	26, 8	37, 9	28, 7	14 %