
Markus Weinhardt

CGRA4HPC’23 - St. Petersburg/FL, USA - May 15, 2023

Challenges of Advancing Coarse-Grained

Reconfigurable Arrays from Embedded to

High-Performance Computing

Outline

► CGRAs for Embedded Systems

► CGRAs for High-Performance Computing:

Challenges

► HiPReP:

High-Performance Reconfigurable Processor

► Related Work, Future Work and Conclusion

2Challenges of Advancing CGRAs from Embedded to High-Performance Computing

CGRAs for Embedded Systems

CGRAs for Embedded Systems

Basic Principles of CGRAs

► Alternative to multicore processors for exploiting instruction-level and

loop-level parallelism

► 2D array of Processing Elements containing ALUs and interconnect

► Similar to FPGAs, but with ALUs instead of look-up tables, word-wide

instead of bit-wide connections

► In most cases, dataflow graphs (DFGs) of inner loop kernels are mapped

to the Processing Elements (PEs)

• Parallelization/Vectorization required to enable loop pipelining!

Implementation

► As ASIC or part of a SoC

► As FPGA overlay („Virtual CGRA“)

➔ flexible, but less efficient (introduces another configuration layer)

Challenges of Advancing CGRAs from Embedded to High-Performance Computing 4

CGRAs for Embedded Systems: Single-Context

► Early CGRAs directly mapped DFGs to ALUs (1:1), aiming at a balanced

pipeline → high parallelism, high throughput

• Placement and Routing similar to FPGA tools

► Examples

• Xputer (rDPU/KressArray) – Prof. Hartenstein, Univ. Kaiserslautern/Germany

• PACT XPP – PACT XPP Technologies AG, Munich/Germany

PACT XPP Dataflow Array

• Optimized for signal/image processing codes

• Data stream synchronization in hardware (handshake protocol)

Challenges of Advancing CGRAs from Embedded to High-Performance Computing 5

Reconfiguration

RAM-PAEs and ALU-PAEs

(Processing Array Elements)

CGRAs for Embedded Systems: Single-Context (cont‘d)

PACT XPP Dataflow Array (cont‘d)

• Single context (i. e. configuration of PAEs/bus connects) running at a time

• Fast, partial reconfiguration (in µ-secs), overlapping with execution

(configuration stored outside CGRA and loaded sequentially)

• Local buffer memories / FIFOs typically used for intermediate results

→ uses fast SRAM (on-chip or off-chip)

• Reconfiguration after larger phases (e. g. in MPEG decoder)

Reference:

V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt: PACT XPP - A

Self-Reconfigurable Data Processing Architecture, Journal of Supercomputing, Vol. 26, No. 2,

Sept. 2003, Kluwer Academic Publishers

6Challenges of Advancing CGRAs from Embedded to High-Performance Computing

B
u
ff
e
r

M
e
m

o
ry

Reconfiguration

Configuration 1

Configuration 2

Configuration 3

CGRAs for Embedded Systems: Multi-Context

► Problem with single-context CGRA

• Large DFGs must be split into several configurations

→ reconfiguration overhead, buffer memory required

• Cyclic DFGs (accumulators etc.) reduce throughput/effective PE utilization

► Solution: Multi-context CGRA

• Every PE locally stores several instructions (contexts) which can be changed

every cycle (single-cycle configuration); local register file for data reuse/

feedback

→ large DFGs fit on smaller array (with reduced throughput)

Seminal work: ADRES Template (IMEC, Belgium)

• bought and used by Samsung!

• new compilation methods (e. g. DRESC based on modulo-scheduling) were

developed for multi-context CGRAs

Challenges of Advancing CGRAs from Embedded to High-Performance Computing 7

Reference:

B. Mei, S. Vernalde, D. Verkest, H. D. Man and R. Lauwereins, ADRES: An Architecture

with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix, in Proc.

13th Intern. Conference on Field-Programmable Logic and Applications, FPL 2003

CGRAs for Embedded Systems: Multi-Context (cont‘d)

8

(a) (b)

Challenges of Advancing CGRAs from Embedded to High-Performance Computing

ADRES Template (cont’d)

Source:

FPL 2003
Reconfigurable Cell (RC)

• ALU (FU) performs integer operations in one cycle

• DRESC compiler maps (several) operations to one PE (RC) at different

time steps (contexts). Scheduler cycles through contexts (in lock-step).

• Results are stored in local register file (for reuse/feedback cycles) and/or

forwarded to neighboring PEs.

• Uses modulo routing resource graph (MRRG) for scheduling and simulated

annealing for placement.

CGRAs for High-Performance Computing:

Challenges

CGRAs for HPC: Challenges

► Support for Floating-Point Operations

• Older CGRAs provide no or limited support for FP operations (e. g. by

combination of two integer ALUs)

→ Extend CGRAs with Floating-Point Units (FPUs)

• Hardware and compiler must handle multi-cycle operations (with and without

pipelining) or operations with varying latency (e. g. FP division)

→ no simple, predictable schedule

► High Memory-Bandwidth Requirements

• CGRA must be integrated in memory hierarchy of host system and/or access

(large) DRAM blocks

→ varying memory access time must be handled

→ no static, fixed schedules, or complete CGRA halt required when memory

 stalls

• Complex address generation for multi-dimensional array accesses required

→ Dedicated Address-Generator Units (AGUs) save precious PEs with

 FPUs for FP computations

► Irregular Codes (e.g. graph algorithms)

10Challenges of Advancing CGRAs from Embedded to High-Performance Computing

HiPReP:

High-Performance Reconfigurable Processor

HiPReP: High-Performance Reconfigurable Processor

► Project at Osnabrück UAS (funded by German Research Found. - DFG)

► Goals:

• Hardware design and C compiler for CGRA with FPUs

• Combining ideas from ADRES and XPP

► First idea:

Challenges of Advancing CGRAs from Embedded to High-Performance Computing 12

Processing Element

HiPReP Architecture Template – Array Architecture

CGRA template:

► Direct communication with 8

nearest neighbors (bidirectional

32-bit channels)

► All connections auto-synchronize

via handshake signals

► Streamed load/store:

Memory accessed by AGUs,

→ array access for two nested

 loops

Read-AGUs: Can broadcast to

 entire row (Row 0-2) or column

 (Col 0-2), respectively

Write-AGUs: Connected to

 rightmost PEs only (Out 0 -2)

13Challenges of Advancing CGRAs from Embedded to High-Performance Computing

3x3 CGRA

HiPReP Architecture Template – Memory Access

► Arbiters combine AGUs to channels, connect to host/memory system

► Same buses also used to configure context memories

► Scalable # of channels, e.g. 4x4 CGRA with 2 read and 1 write channel:

Challenges of Advancing CGRAs from Embedded to High-Performance Computing 14

AGU Col 3

AGU Col 2

AGU Col 1

AGU Col 0

AGU Row 0

AGU Row 1

AGU Row 2

AGU Row 3

A
rb

ite
r

A
rb

ite
r

4x4

CGRA

A
rb

ite
r

AGU Out 0

AGU Out 1

AGU Out 2

AGU Out 3Read

channel 0

Read

channel 1

Write

channel 0

Connection to Host Memory System

Address:

Data:

Control:

Queue:

CHiPReP C Compiler

15

► Based on LLVM and CCF compilation frameworks

► Annotated inner loops (A) mapped to Data Dependence Graph (B) and

split into execution part (C), mapped to PEs, and memory-movement

part (D), mapped to AGUs

► Clustering heuristic combines DDG nodes in one PE (increases PE

utilization, but decreases throughput!)

► Combined Placement, Routing and Pipeline Balancing maps clusters on

PEs and memory accesses on AGUs (E), optimized by Simulated

Annealing

► Code Generation

Challenges of Advancing CGRAs from Embedded to High-Performance Computing

HiPReP Architecture Template – Processing Element (PE)

16

► Differs from usual CGRA-PEs

→ 32-bit integer ALU and single-precision, pipelined Floating-Point Unit

→ Fused-Multiply Add (FMA) operator (for mul-add/mul-acc operations),

 3rd operand from dedicated register, not as general as opds. 1 and 2!

► Homogenous and heterogeneous array can be generated/synthesized

► Each PE has private context memory, executes 32-bit RISC-like

instructions → independent control flow (not in lock-step)

► Register File (32 32-bit registers):

• Input operands are read from internal register file or output registers

of neighboring PEs

• PE's output written to internal register file or output registers

► Hazard detector (comparable to scoreboard) used for synchronizing

operations with varying latencies (in-order issue/out-of-order completion)

► Instruction Set supports comparisons, conditional/unconditional jumps

(no predicated instructions!), zero-delay jumps for infinite loops

Challenges of Advancing CGRAs from Embedded to High-Performance Computing

HiPReP Architecture Template – Processing Element (PE)

Challenges of Advancing CGRAs from Embedded to High-Performance Computing 17

PE Components

► FMA Unit performs FP instruc-

tions (add, sub, mul, cmp, macc,

fma, fms, int2fp, fp2int)

► RAW Detector enforces RAW

dependences

► Write Hazard Detector enforces

correct out-of-order completion

References:

P. Käsgen, M. Weinhardt, C. Hochberger:

• A Coarse-Grained Reconfigurable Array

for High-Performance Computing Appli-

cations, Intern. Conf. on ReConFigurable

Computing and FPGAs (ReConFig), 2018

• Dynamic Scheduling of Pipelined

Functional Units in Coarse-Grained

Reconfigurable Array Elements, Intern.

Conf. on Architecture of Computing

Systems (ARCS 2019), 2019

Integration in Rocket Chip / Synthesis Results

Challenges of Advancing CGRAs from Embedded to High-Performance Computing 18

Source:

K. Asanovi et al.: The Rocket Chip Generator, UC

Berkeley, Tech. Report No. UCB/EECS-2017-17

HiPReP Core (synthesizable Chisel

model) used as RoCC Accelerator

→ direct access to L1 cache!

 (i.e. 1 read and 1 write channel

 combined)

Synthesis Results

3x3 CGRA including AGUs,

Synopsys Design Compiler on

UMC 65 nm LL process:

• Area: ~ 1 mm2

• Frequency: ~ 770 MHz

(wireload model WL20)

Related Work, Future Work and Conclusion

Related Work, Future Work and Conclusion

20

► Related Work: Riken High-Performance CGRA (RHP-CGRA)

• 1:1 mapping of DFG to PEs

• High memory-bandwidth through Address Generators (AGs) connected to

external memory via Memory Controllers and Interconnect Network

• Tiles of CGRAs and On-Chip SRAM envisioned

► Future Work (HiPReP)

• Increase memory bandwidth with individual D-caches (or with

scratchpad memory) for several memory channels

• Benchmark Analysis and Design Space Exploration

► Conclusion

• There are promising approaches to extend CGRAs to HPC, but no

complete, ready-to-use system avalable yet.

➔ Especially solutions for irregular code are lacking!

Challenges of Advancing CGRAs from Embedded to High-Performance Computing

Reference:

A. Podobas, K. Sano, S. Matsuoka: A Template-based Framework for Exploring Coarse-

Grained Reconfigurable Architectures, Proc. Intern. Conf. on Application-Specific Systems,

Architectures and Processors (ASAP) 2020

Challenges of Advancing CGRAs from Embedded to High-Performance Computing 21

THE END

Thank you for

your attention!

Any questions?

	Folie 1: Challenges of Advancing Coarse-Grained Reconfigurable Arrays from Embedded to High-Performance Computing
	Folie 2: Outline
	Folie 3: CGRAs for Embedded Systems
	Folie 4: CGRAs for Embedded Systems
	Folie 5: CGRAs for Embedded Systems: Single-Context
	Folie 6: CGRAs for Embedded Systems: Single-Context (cont‘d)
	Folie 7: CGRAs for Embedded Systems: Multi-Context
	Folie 8: CGRAs for Embedded Systems: Multi-Context (cont‘d)
	Folie 9: CGRAs for High-Performance Computing: Challenges
	Folie 10: CGRAs for HPC: Challenges
	Folie 11: HiPReP: High-Performance Reconfigurable Processor
	Folie 12: HiPReP: High-Performance Reconfigurable Processor
	Folie 13: HiPReP Architecture Template – Array Architecture
	Folie 14: HiPReP Architecture Template – Memory Access
	Folie 15: CHiPReP C Compiler
	Folie 16: HiPReP Architecture Template – Processing Element (PE)
	Folie 17: HiPReP Architecture Template – Processing Element (PE)
	Folie 18: Integration in Rocket Chip / Synthesis Results
	Folie 19: Related Work, Future Work and Conclusion
	Folie 20: Related Work, Future Work and Conclusion
	Folie 21: THE END

