1. Aufgabe: Die nebenstehend zum Zeitpunkt t=0 dargestellte Fördervorrichtung besteht aus einer Kreisscheibe (Radius R) mit einer Haltevorrichtung (s. Punkt C), und einem Transportband. Die Aufgabe der Vorrichtung ist es, den schraffierten Körper von A über B nach C zu transportieren. Die Übernahme des Körpers vom Transportband durch die Kreisscheibe kann nur dann erfolgen, wenn die Umfangsgeschwindigkeit der Kreisscheibe mit der Bahngeschwindigkeit des Bandes zum Zeitpunkt der Übernahme übereinstimmt. In der gezeichneten Position hat die Kreisscheibe die Winkelgeschwindigkeit \(\omega_0 \) und das Transportband die Anfangsgeschwindigkeit \(v_0 \). Das Transportband wird von A nach B mit einer konstanten Beschleunigung a beschleunigt. Die Kreisscheibe wird gleichzeitig bis zum Zeitpunkt der Übernahme des Gutes in B mit der konstanten Winkelbeschleunigung \(\alpha \) beschleunigt, danach wird die erreichte Geschwindigkeit der Kreisscheibe beibehalten.

1. Welche Zeit \(t_0 \) vergeht, bis die Haltevorrichtung der Kreisscheibe den Punkt B erreicht hat?
2. Welche Winkelgeschwindigkeit \(\omega_B \) hat dann die Kreisscheibe?
3. Wie groß ist die Anfangsgeschwindigkeit \(v_B \) des Transportbandes?
4. Wie groß ist die Länge \(b \) des Transportbandes?
5. Wie lange dauert der Transport von A nach C?

Gegeben: \(\omega_0 = 2 \, \text{s}^{-1} \); \(\alpha = 4 \, \text{s}^2 \); \(a = 1.5 \, \text{m/s}^2 \); \(R = 0.5 \, \text{m} \)

\[v_0 = 7.5 \, \text{m/s} \quad b = 1.75 \, \text{m} \]

2. Aufgabe: Eine Vorrichtung der Masse \(m_2 \) wird mittels der Masse \(m_1 \) aus der Ruhelage bewegt. Wegen Blockieren der Tragrolle B entsteht an dieser Stelle Gleitreibung (Gleitreibungskoeffizient \(\mu \)). Die Umlenkrolle und die beiden Tragrollen sind masselos. Bestimmen Sie:

1.) die Beschleunigung der Masse \(m_2 \);
2.) die Aufstands(kräfte) zwischen dem Seil und den Rollen A und B.

Gegeben: \(m_1 = 1000 \, \text{kg} \); \(m_2 = 6000 \, \text{kg} \); \(d = 2 \, \text{m} \); \(e = 0.5 \, \text{m} \); \(\mu = 0.2 \)

\[\alpha_2 = 0.54 \, \text{m/s}^2 \]

\[F_A = 28676.2 \, \text{N} \]

\[F_B = 30183.7 \, \text{N} \]
Aufgabe 3: Das gezeichnete symmetrische System besteht aus einer vertikalen Welle, vier gleichen masselosen Stäben und drei Massen. Die beiden oberen Stäbe sind an einem Ende gelenkig an der Welle befestigt und an dem anderen Ende hängen die Massen \(m \). Die beiden unteren Stäbe verbinden gelenkig die Massen \(m \) mit der Masse \(m_1 \), die sich entlang der Drehachse bewegen kann. Die Masse \(m_1 \) ist mit dem Gelenk \(A \) durch eine Feder (Federkonstante \(c \)) verbunden. Die Länge der entspannten Feder beträgt \(b \). Das System rotiert mit einer konstanten Winkelgeschwindigkeit \(\omega \) um die vertikale Achse. Infolge der Flieh- und Gewichtskräfte stellt sich ein Winkel \(\beta \) ein, die Feder wird deformiert.

Wie groß muss die Winkelgeschwindigkeit \(\omega \) sein, damit sich der Winkel \(\beta \) einstellt?

Gegeben: \(m = 2 \text{ kg; } m_1 = 5 \text{ kg; } b = 1,0 \text{ m; } d = 0,5 \text{ m; } \beta = 30^\circ; \ c = 1000 \text{ N/m} \)

\[\omega = 5,32 \text{ s}^{-1} \]

4. Aufgabe: Das skizzierte schwingungsfähige System besteht aus einem drehbar gelagerten, senkrecht stehenden Balken (Masse \(m_1 \)) mit einer Punktmasse \(m_2 \) am Ende. Am Stab ist ein Seil befestigt, das schlupffrei über einer Rolle (Masse \(m_3 \), Radius \(r \)) gelegt und mit einer Feder \(c_2 \) verbunden ist. Am Balken ist eine weitere Feder \(c_1 \) befestigt. Beide Federn sind vorgespannt (Feder \(c_1 \) um \(f_1 \), Feder \(c_2 \) um \(f_2 \)).

Bestimmen Sie:

a) die Vorspannung \(f_2 \) der rechten Feder in der skizzierten statischen Ruhelage
b) die Bewegungsgleichung des Systems für kleine Schwingungen um die statische Ruhelage;
c) die Eigenkreisfrequenz und Periodendauer;

Gegeben: \(m_1 = 6 \text{ kg; } m_2 = 7 \text{ kg; } m_2 = 22 \text{ kg; } b = 0,49 \text{ m; } r = 0,1 \text{ m; } c_1 = 450 \text{ N/m; } c_2 = 500 \text{ N/m; } f_1 = 5 \text{ cm} \)

\[f_2 = 0,25 \text{ m/s}^2 \]

\[\omega = 5,32 \text{ s}^{-1} \]

\[T = 1,256 \text{ s} \]

5. Aufgabe: Das in A drehbar gelagerte System besteht aus einer Kreisscheibe (Radius \(r \), Masse \(m_1 \)), einem Stab (Masse \(m_2 \), Länge \(b \)) und einer Punktmasse \(m_3 \). Die Masse \(m_4 \) ist über ein Seil mit der Kreisscheibe verbunden. Durch eine um \(f \) vorgespannte Feder (Federkonstante \(c \)) wird das System aus der skizzierten Ruhelage beschleunigt.

Bestimmen Sie die Winkelgeschwindigkeit \(\omega \) der Kreisscheibe und die Geschwindigkeit der Punktmasse \(m_3 \) in der Lage D.

Gegeben: \(m_1 = 5 \text{ kg; } m_2 = 3 \text{ kg; } m_3 = 1 \text{ kg; } m_4 = 3 \text{ kg; } \beta = 30^\circ; \ r = 0,2 \text{ m; } b = 2r = 0,4 \text{ m; } \mu = 0,2; \ c = 8000 \text{ N/m; } f = 0,05 \text{ m} \)

\[\omega = 6,24 \text{ s}^{-1} \]

\[\delta_3 = 3,74 \text{ s}^{-1} \]
Aufgabe 1: An einer um horizontale Achse A drehbar gelagerten Kreisscheibe ist wie skizziert eine Stange befestigt. Am Ende der Stange sitzt eine Punktmasse \(m \). Die gezeichnete Lage ist die Ruhelage des Systems. Die Kreisscheibe wird aus der Ruhelage gleichförmig mit Winkelbeschleunigung \(\alpha \) beschleunigt. In der Stellung B verläßt die Punktmasse \(m \) die Stange und befindet sich danach im freien Flug, bis sie den Punkt C erreicht. Die Strecke BC wird in der Zeit \(t_e \) zurückgelegt. Zu ermitteln:

1. Abstände \(h \) und \(l \),
2. Geschwindigkeit \(v_C \) der Punktmasse beim Erreichen der Stelle C.

Gegeben:
\[
R = 0,5 \text{ m}; \quad \varphi_b = 60^\circ; \quad \alpha = 12 \text{ s}^{-2}; \quad t_e = 1 \text{ s}.
\]

Aufgabe 2: Eine Walze (Masse \(m_1 \), Massenträgheitsmoment \(J_b \)) ist gelenkig am freien Ende des Balkens AB (Länge \(b \)) gelagert. Der Balken ist im Punkt A fest eingespannt. Über die Walze sind zwei Schale geschlungen. An einem Seil ist die Punktmasse \(m_2 \) und am zweiten Seil die Punktmasse \(m_3 \) befestigt. Zum Zeitpunkt \(t = 0 \) befindet sich die Masse 2 im Punkt A, das System ist im Ruhezustand. Danach wird das System freigegeben, es tritt die Bewegung auf. Durch die Reibung zwischen der Punktmasse 2 und dem Balken (Gleitreibungszahl \(\mu \)) wird die Bewegung abgebremst.

Bestimmen Sie:

1. die Beschleunigung der Masse \(m_2 \),
2. den Weg, der von der Masse 2 zum Zeitpunkt \(t_1 \) zurückgelegt wird,
3. die vertikale Auflagerkraft im Punkt A zum Zeitpunkt \(t_1 \)

Gegeben:
\[
J_b = 2,0 \text{ kgm}^2; \quad m_1 = 10 \text{ kg}; \quad m_2 = 10 \text{ kg};
\]
\[
m_3 = 20 \text{ kg}; \quad R = 0,4 \text{ m}; \quad r = 0,1 \text{ m}; \quad \mu = 0,2; \quad b = 4 \text{ m};
\]
\[
t_1 = 2 \text{ s}.
\]

\[
a_2 = 1,444 \text{ m/s}^2
\]
\[
l = 7,688 \text{ m}
\]
\[
F_{Ay} = 276,3 \text{ N}
\]

Bitte wenden
Aufgabe 3: Ein drehbar gelagerter Balken (Masse m_2, Länge b) ist mit einer drehbar gelagerten Kreisscheibe (Masse m_1, Radius R) durch ein Seil verbunden. Am Ende des Seils hängt die Punktmasse m. In der gezeichneten Lage befindet sich das System in Ruhe. Die Kreisscheibe hat die momentane Winkelgeschwindigkeit ω_1, die Feder ist entspannt. An die Kreisscheibe wird durch die Kraft F ein Klotz angedrückt, die Gleitreibungszahl beträgt μ.

Wie groß ist die maximale Zusammendrückung der Feder?

Gegeben:
- $m_1 = 5 \text{ kg}$;
- $m_2 = 10 \text{ kg}$;
- $m = 10 \text{ kg}$;
- $R = 0.6 \text{ m}$;
- $b = 2R$;
- $\mu = 0.2$;
- $c = 5000 \text{ N/m}$;
- $F = 100 \text{ N}$;
- $\omega_1 = 2 \text{ s}^{-1}$

Aufgabe 4: Das skizzierte schwingungsfähige System besteht aus einem drehbar gelagerten Balken (Masse m_1), einer Walze (Masse m_2, Massenträgheitsmoment J_ω) und einer Feder (Federkonstante c). Über die Walze sind zwei Seile gezogen. An einem Seil ist die Feder angebracht, das zweite Seil ist am Punkt D des Balkens befestigt. Das System schwingt mit kleiner Amplitude um die statische Ruhelage, die in der Abbildung dargestellt ist.

Bestimmen Sie:
1) die Bewegungsgleichung des Systems für kleine Schwingungen um die skizzierte statische Ruhelage;
2) die Eigenkreisfrequenz und Periodendauer;
3) die maximale Winkelbeschleunigung der Walze, wenn der Punkt D des Balkens zum Zeitpunkt $t = 0$ um γ_0 nach unten ausgelenkt und dann mit der Geschwindigkeit $v_0 = 0$ losgelassen wird.

Gegeben:
- $J_\omega = 1.25 \text{ kgm}^2$;
- $m_1 = 9 \text{ kg}$;
- $m_2 = 12 \text{ kg}$;
- $\gamma_0 = 0.05 \text{ m}$;
- $b = 1.0 \text{ m}$;
- $c = 200 \text{ N/m}$;
- $R = 0.5 \text{ m}$;
- $r = 0.2 \text{ m}$.

Aufgabe 5: Zwei Kreisscheiben sind durch ein Seil miteinander verbunden. Die Kreisscheibe 1 wird von einem Elektromotor aus dem Ruhezustand mit dem Antriebsmoment M_m angetrieben, durch das Seil wird die Bewegung auf die zweite Kreisscheibe übertragen. Durch die Reibung zwischen den Kreisscheibe 2 und der horizontalen Ebene (Gleitreibungszahl μ) wird die Bewegung abgebremst.

Berechnen Sie:
1) Winkelbeschleunigung α_1 der Kreisscheibe 1.
2) Motorleistung zum Zeitpunkt $t = t_1$.

Gegeben:
- $R = 0.4 \text{ m}$;
- $r = 0.2 \text{ m}$;
- $m_1 = 10 \text{ kg}$;
- $m_2 = 20 \text{ kg}$;
- $M_m = 30 \text{ Nm}$;
- $\mu = 0.3$;
- $t_1 = 2 \text{ s}$.

$$\alpha_1 = 77.08 \text{ s}^{-2}$$
$$P_1 = 1025 \text{ W}$$
Fachhochschule Osnabrück
Fakultät I & I
Prof. Dr.-Ing. J. Möhlenkamp
Prof. Dr.-Ing. V. Prediger

Kinematik und Kinetik SS 2006 (04.07.2006)

1	2	3	4	5	Σ	Note:

1. **Aufgabe:** Zwei Fahrzeuge fahren bei eingeschränkten Sichtverhältnissen auf regenmässer Fahrbahn in die gleiche Richtung mit den Geschwindigkeiten v_{A0} und v_{B0}. Zur Zeit $t_0 = 0$ erkennt der Fahrer des Fahrzeugs B das Fahrzeug A, zu diesem Zeitpunkt beträgt ihr Abstand c (s. Skizze). Nach einer Reaktionszeit $t_r = 0$ bremsen Fahrzeug B mit der konstanten Verzögerung a_B, das Fahrzeug A behält seine Anfangsgeschwindigkeit v_{A0}. Anschließend stoßen beide Fahrzeuge zusammen.

Gegeben:
$c = 48 \, \text{m}, \quad v_{A0} = 12 \, \text{m/s}, \quad v_{B0} = 30 \, \text{m/s}, \quad a_B = 3.0 \, \text{m/s}^2, \quad t_r = 1.0 \, \text{s}.$

1) Stellen Sie die kinematischen Diagramme dar.
2) Wann und wo stoßen beide Fahrzeuge zusammen?
3) Wie groß ist ihre Geschwindigkeit gegeneinander kurz vor dem Zusammenstoß?

\[S_A = 36 \, \text{m}, \quad S_B = 84 \, \text{m}, \quad \Delta v = 12 \, \text{m/s}. \]

2. **Aufgabe:** Über eine drehbar gelagerte Walze (Masse m_1, Massenträgheitsmoment J_1) sind zwei Seile geschlungen. An einem Seil hängt die Punktmasse m, am anderen Seil ist wie skizziert ein drehbar gelagerter Balken (Masse m_2, Länge b) befestigt. In der gezeichneten Lage befindet sich das System im Ruhezustand, die Feder (Federkonstante c) ist um den Betrag f auseinandergezogen. Nach Entriegelung der Feder setzt sich das System in Bewegung. Sie wird beeinflusst durch das Andrücken mit der Kraft F eines Klotzes an die Kreisscheibe, die Gleitreibungszahl beträgt μ.

Wie groß ist die Winkelgeschwindigkeit ω_0 der Kreisscheibe zum Zeitpunkt, zu dem die Feder gerade entspannt wird? Man geht davon aus, dass die Verschiebungen und Verdruckleiben der Körper klein sind.

\[\frac{\omega_0}{\omega_0} = \frac{\theta}{\theta}, \quad \omega_0 = \omega + \xi. \]

Gegeben: $m_1 = 20 \, \text{kg}; \quad m_2 = 12 \, \text{kg}; \quad m = 6 \, \text{kg}; \quad J_1 = 2 \, \text{kgm}^2; \quad R = 0.6 \, \text{m}; \quad r = 0.4 \, \text{m}; \quad b = 1 \, \text{m}; \quad \mu = 0.2; \quad c = 5000 \, \text{N/m}; \quad F = 200 \, \text{N}; \quad f = 0.06 \, \text{m}.$

Bitte wenden
3. Aufgabe: Das rotierende System besteht aus einer vertikal gelagerten Welle und einer schräg angeschweißten Unterlage, auf der eine Masse m haftet (Haftreibungskoeffizient \(\mu_h \)).
Zur Zeit \(t_0 = 0 \) beträgt die Drehzahl \(n_0 \), danach wird die Welle gleichförmig mit der Winkelbeschleunigung \(\alpha_0 \) beschleunigt.
Man bestimme zum Zeitpunkt \(t_1 \):

1) die Geschwindigkeit der Masse m;
2) den erforderlichen Haftreibungskoeffizienten \(\mu_h \), damit sich die Masse m nicht in Bewegung versetzt.

Gegeben:
\(I = 0,5 \text{ m}; \ m = 1 \text{ kg}; \ \beta = 20^\circ; \ n_0 = 10 \text{ min}^{-1}; \ \alpha_0 = 3 \text{ s}^2; \ t_1 = 1 \text{ s}. \)
\(\varphi = 1,3 \text{ m/s}; \ \mu_h = 0,548 \)

4. Aufgabe: Über eine drehbar gelagerte Walze (Masse \(m_1 \), Massenträgheitsmoment \(J_A \)) sind zwei Seile geschlungen. An einem Seil ist die Feder (Federkonstante \(c \)) angebracht, sie macht das System schwingungsfähig. Das zweite Seil ist um eine masselose Umlenkrolle geführt. Im Schwerpunkt der Umlenkrolle ist über ein weiteres Seil die Punktmasse m befestigt. Das System schwingt mit kleiner Amplitude um die statische Ruhelage, die in der Abbildung dargestellt ist.
Bestimmen Sie:

1) die Bewegungsgleichung des Systems für kleine Schwingungen um die skizzierte statische Ruhelage;
2) die Eigenkreisfrequenz \(\omega_0 \) und Schwingungsperiode T;
3) die Schwingungsamplitude der Punktmasse m, wenn bekannt ist, dass sie zum Zeitpunkt \(t = 0 \) um \(y_0 \) nach unten ausgelenkt und dann mit der Geschwindigkeit \(\dot{y}_0 \) losgelassen wird.

\(\omega_0 = 2,5 \text{ s}^{-1}; \ T = 3,14 \text{ s} \)
\(\dot{y}_0 = 0,07 \text{ m} \)

5. Aufgabe: Ein Kreiszylinder (Masse \(m_1 \), Radius \(r \)) dreht anfänglich mit der Winkelgeschwindigkeit \(\omega_0 \) und wird zum Zeitpunkt \(t_0 = 0 \) durch Entriegeln des Schwenkarmes AB auf den Kreiszylinder 2 (Masse \(m_2 \), Radius \(R \)), der sich zu diesem Zeitpunkt noch im Ruhezustand befindet, abgesetzt. Nach dem Absetzen wird dann der zweite Kreiszylinder durch die zwischen den beiden Kreiszylinder vorhandene Reibung in Bewegung gebracht, der erste Kreiszylinder wird dabei abgebremst. Zu bestimmen sind:

1) Dauer der Schlupfphase;
2) Winkelgeschwindigkeiten der beiden Kreiszylinder nach Ende der Schlupfphase.

Gegeben: \(R = 0,5 \text{ m}; \ r = 0,4 \text{ m}; \ m_1 = 200 \text{ kg}; \ m_2 = 400 \text{ kg}; \mu = 0,2; \ \omega_0 = 150 \text{ s}^{-1}. \)
\(t_s = 10,18 \text{ s}; \ \omega_1 = 50 \text{ s}^{-1}; \ \omega_2 = 40 \text{ s}^{-1}. \)