Beitrag zum 17. DAGM-Symposium Mustererkennung 1995.
13.-15. September 1995, Bielefeld

A VLSI system for linear and non-linear local image filtering*

Bernhard Lang and Manfred Troike
MAZ Hamburg GmbH, Harburger Schlofstrafle 6-12,
21079 Hamburg, Germany
+49/40/76629-2001, email: lang@maz-hh.de
+49/40/76629-1441, email: tk@maz-hh.de

Abstract

This paper presents the GIPSi processor array which is a programmable VLSI chip de-
signed for local linear and non-linear image filtering algorithms. A first section introduces
the GIPSi approach. Then the parallel SIMD architecture is described followed by a section
about implemented algorithms. Special emphasis is laid on a rank order filter algorithm
which has been adapted to the SIMD architecture. It follows a section concerning the VLSI
implementation of the GIPSi system and some conclusions.

1 Introduction

The GIPSi! architecture is designed for linear and non-linear image preprocessing algorithms.
Examples are linear algorithms like low-pass filtering and edge-detection and nonlinear algo-
rithms like erosion or median filtering. More general speaking the GIPSi system can handle
mappings from a source image I; to a result image I, where a line sequential data representa-
tion is assumed for both, source and result images. Further a pixel r, , € I of the result image
should only depend on a local window of the source image which surrounds the corresponding
source pixel s, € I;.

Due to the easy and regular kernels it is possible to build adequate hardware for classes of image
preprocessing algorithms. Different architectures have been proposed [Ste83, Ree84, Kun88|.
One approach describes a parallel line scan architecture which is formed by a one-dimensional
SIMD array of simple processors [FH85] and related data input and output shift registers. It
shows a very high flexibility because it allows the implementation of algorithms on a software
basis.

2 Line scan SIMD architectures for image processing

Figure 1 shows an overview of a system using the addressed SIMD approach. The 1-D array
includes 3 main execution units which work in parallel: an input shift register, an array of pro-
cessors P (each with private memory M) where computing occurs, and an output shift register.
A further unit described as sequencer supplies a common instruction stream to all processors
of the system. Omne processor is available for each image column, thus one result line can be
computed in parallel by a SIMD program. When a new line of the source image is clocked into
and a previously computed result line is clocked out of the system a new result line can be
computed in parallel. Thus computing can be hidden behind the incoming and outgoing data
streams.

*This work has been done in cooperation with TU Hamburg Harburg, Technische Informatik I.
1GIPSi: General Purpose Image Preprocessor in Silicon

Parallel Line Scan Architecture

Sequencer

[L) 1D SIMD Array

Memory, CCD-Chip
I

L]

Address
generator

Address
generator

Figure 1: SIMD Processor Line for image processing tasks

Existing Systems: Some systems have been designed using the described approach. A first
system named AIS-5000 [Wil88] shows a very low integration level. Only 8 bit-serial processors
without memory fit on one chip. The memory has to be supplied by further chips.

A very high integrated approach has been presented in [MKW T90] where a serial video processor
(SVP) is introduced for digital TV. It consists of up to 1024 processors on one chip each equipped
with two memory banks of 128 bits. An instruction generator (sequencer) is included on chip.
The chip would be suitable for image processing demands but due to its consumer market
orientation it is only available in very large lots. This prevents or even limits its use as an image
processing accelerator for industrial applications.

Another work [CS91] describes a video/image processor (VIP) where 512 processors each in-
cluding a memory of 128 Bits are integrated on one chip. Its processing units are specially
designed for image processing algorithms. However the chip forms only the core of a desired
accelerator and must be extended by an instruction sequencer. Further as a research product it
is not available.

A current system [YKF94] integrates 64 8-Bit processors with 32 blocks of 64 kBit memory on
one chip. Yet its current status is “experimental product” and no intention exists to produce it.

The GIPSi system: GIPSi fills the described gap. It includes a high integrated core of 512
single bit processors on a single chip. Input and output of image data is handled by a flexible
protocol [Lan94a]. This protocol allows an easy adaption of surrounding hardware. Further
a sequencer chip is planned which generates instruction streams by expanding a very dense
program representation. Programming of GIPSi is supported by a symbolic macro assembler.
Program debugging can either be done at the real hardware or using a simulator program. The
simulator program allows a very transparent look into the system and eases the evaluation of
new programs.

3 GIPSi programming model

The programmer can look to the GIPSi system from two different views. The first view shows a
global overview, the whole processor array is regarded as one block surrounded by the supporting
units. This view is important for setting up the system via a controlling host processor and for
understanding the global system behavior. The second view looks to one single processor of the
SIMD array and shows the local processor architecture. This view is important for writing image
processing programs. A GIPSi assembler language has been developed to support programming
at that level.

Dataln | H > > > DataOut
H - - -
' 5 2 2 2
ToLeft «-| Margin [+ 2] 2 — 2 *— Margin <1— FromRight
FromLeft —|L> Control —* § > § = —* § *_Control —L> ToRight
| ; A A A : |
| | @ 7 7 |
: Param. | | = = & :
i | Memory | ! © o O |
I : : I
' A T E Vs e e AN = A '
: ‘ /\ /\ Z\ /\ ParamData :
| 1] | 1] "Address Row Reg. |
| Col. Reg. |
| o Write |
I GI.P ST ProcInstruction [
nstruction e |
L - GIPSL System |

Figure 2: Programmers global view to the GIPSi system

3.1 Global view to the GIPSi system

Globally the GIPSi system consists of a linear array of P single bit processors and some further
blocks. Their arrangement is shown in Figure 2.

GIPSi Processor: One processor must be available for each column of the processed images.
Thus for 512 x 512 images a linear array of P = 512 processors is required. For wider images
several GIPSi chips can be combined to form one wide line. Each single processor contains
some local registers, an ALU, local memory and one stage of a shift register (see section 3.2).
The combined shift register stages of all processors form a global shift register used for image
input and output.

Parameter Memory: The parameter memory is designated for program parameterization and
is loaded by a controlling host processor. All processors in the system have read access to
this memory simultaneously.

Margin Control: Each processor can communicate to its left and right neighbors for local
window processing. However the left and right outermost processors only have one local
neighbor on chip. The margin control units allow programmable handling of these margin
connections.

Column and row registers: A column and a row register hold the size of the processed images
and must be set by a controlling host processor. The values are required for controlling the
input/output shift register to detect end of line and end of image conditions.

3.2 Architecture of a single GIPSi processor

Image processing algorithms will be executed by all single-bit processors of the GIPSi system
simultaneously. When creating a program the programmer may think in writing it for a single
processor but minded that it runs on all processors of the array. Figure 3 shows a single processor.
At the top one stage of the input/output shift register SR is shown. Below the local memory
and the connection to the global parameter RAM can be identified. Five registers are at the
programmers disposal: two memory registers (MRO, MR1), a communication register (CR) and two
result registers (RRO, RR1). The ALU is shown at the bottom.

Shift register: The shift register SR is used to move image data into and out of the GIPSi ar-
ray. Shifting is done in parallel to program execution. Because input and output is done syn-
chronously only one shift register is required. When the input/output shift of a source/result
line pair is complete a transfer from SR into the local memory and vice versa is done under
program control. Synchronizations between transfer instructions and the SR hardware is done
automatically and needs no intervention by the programmer.

—————————————————————————————————————

 GIPSI Processor] |
|

Dataln | > SR > DataOut
Address > 128 Bit [|
.] local |
Write “— RAM T__D !
ParamData I I ¢ |
| S — |
S s sl :
: MRO| |[MR1 CR RRO| |RR1 !

ToLeft < ! ¢ - FromRight

FromLeft — CRL CRR ~ ToRight
ConditionCode ~— \/ \/ \/ |
! \A/\B/\C/ !
! —Enable and :
ProcInstruction _| >—= Selection ALU: F(A,B,C) !
1 —Signals |

Figure 3: Programmers view to one processor of the GIPSi system

Memory: Each single processor has its local memory of 1 Bit wordsize. The current version
offers 128 bits which can be read or written. Besides the local memory all processors have
access to the parameter memory introduced above. Local memory and parameter memory
are distinguished by different address ranges in a common address space.

Registers: Three types of registers are present. Memory registers MRO and MR1 are loaded from
memory and serve as ALU source operands. Result registers RRO and RR1 are loaded with
intermediate ALU results and also serve as ALU operands. A communication register CR can be
loaded from memory or from the ALU or via CRL/CRR from the communication register of the
left /right neighboring processor. CR further serves as source for the left or right neighboring
processors ALU.

ALU: The ALU maps three source operand bits to one result bit. Any arbitrary function is
allowed for that mapping as explained in [Lan94b]. Local registers (MRO, MR1, RRO, RR1) or
communication registers of direct neighbors via CRL, CRR can be selected as source. The result
can be written into registers RRO, RR1, CR and into the local RAM memory.

3.3 Supporting software tools

Software development is supported by symbolic assembler and a simulator/debugger. The as-
sembler is available for PC and SUN-Workstation platforms, the simulator is available for PCs.

The assembler matches the GIPSi structure. It offers a block oriented language with local
scopes for variables and constants. It allows to specify parallel actions which are executable by
the processors within one cycle. Conditional instruction specification is supported which eases
the creation of parameterizable programs and macros. Macro handling is done by a built-in
preprocessor.

The simulator gives a close look into program execution on the GIPSi system. It works on TIFF
image data and on instruction sequences generated by the assembler. Single step execution and
examination of each processor makes the software development transparent.

4 Algorithm implementations
The following table shows several filters and related execution cycles to compute one result

image line on the GIPSi system. The cycle count for full images can be achieved by multiplying
the values by the number of image lines.

Table 1: Execution times for image processing operations using GIPSi

Algorithm: Cycles:
Linear filter with constant coefficients (3x3) < 1170
Linear filter with constant coefficients (5x5) < 3135
Min/Max-operators (Erosion, Dilatation) (3x3) 180
Sobel edge detection 252
Kirsch edge detection 1173
Rank order filter (3x3) 538

Assuming a clock rate of 50 MHzup to 3200 cycles can be executed during the 64us scan period of
one video line. The implementations are based one a macro library. This library includes macros
for elementary arithmetic operations, various comparisons, communication between neighboring
processors, input and output operations, and more.

4.1 Bit-based rank order filtering for VLSI and SIMD systems

A rank order filter will be presented as an example how to prepare algorithms for the GIPSi
system. The algorithm is suitable for SIMD and VLSI implementations. It is based on the
algorithm of Gu and Swamy [GS92] which was developed for VLSI implementations.

A rank order filter of rank [applied to an ordered set P = {pg,p1,--.,Pw—1} of integer values
selects one element as result r. In this section rank [is assumed as follows: a filter with rank
[selects the [-biggest element. E.g. a rank [= 1 filter selects the biggest element (maximum
filter) and a rank [= (w — 1)/2 filter (w odd) determines the median element of a given set.

The algorithin compares the bits of the elements in descending order and thus belongs to the
class of radiz sort algorithms. In contrast to algorithins based on a divide and conquer strategy
(e.g. [Knu73]) which require dynamic resources this algorithm is static and thus suited for SIMD
computing.

Let pg[i] be bit ¢ of element pg, 0 <7 < (n — 1) where n denotes the wordsize of the elements
then the algorithm in Figure 4 selects the value r from set P with rank [. While scanning the
set elements py at decreasing bit positions the search status is kept in two vectors f and pp of
size w. The bits f[k] and pp[k| reflect the search status of element py.

The vector f stores a “found” status. If the ordering of an element p; with respect to the
demanded rank value r has been determined then the corresponding bit f[k] is set to 1, otherwise
it remains 0. The vector pp holds precalculated bits of the elements for comparison steps. If
flk] = O then pp[k| contains that bit of p; which is required for the next comparison step,
otherwise pp[k] keeps the bit of py from that position where the ordering of py respective r had
been determined.

Initialization phase: The highest bits pg[n — 1] of all elements are accumulated. The achieved
sum s is compared against rank [. If s > [then at least [elements have the highest bit set to
1 and are equal or bigger than the demanded rank value r. Thus the rank value r must have
its highest bit r[n — 1] set to 1. If s <[then at least w — [+ 1 elements have the highest bit
set to 0 and thus r[n — 1] must be 0.
Then the found status is determined by comparing the result bit r[n — 1] against the highest
bit pg[n — 1] of each element. If r[n — 1] # pg[n — 1] then the ordering of py respective r is
known and f[k] is set to 1, otherwise f[k] is set to 0.

Rank _Order_Filter(P,l,n) — r
Initialization Phase:

s:= Y, pgln—1]
0<k<w

if (s > 1) then r[n — 1] :=1 else r[n — 1] := 0;
for k=0 to w — 1 do begin
if (r[n — 1] # pg[n — 1]) then f[k] :=1 else f[k] :=0;
if (f[k] = 0) then pplk] := pr[n — 2] else pp[k] .= px[n — 1];

end;
Main Loop:
for i =n — 2 downto 1 do begin
s= . pplkl;
0<k<w

if (s > 1) then r[f] :=1 else r[i] := 0;
for k=0 to w — 1 do begin
if (r[i] # pp[i]) then f[k] :=1 else f[k] := f[k];
if (f[k] = 0) then pp[k] := py[i — 1] else pp[k] := pp[k];
end;
end;
Termination Phase:
s=). pplkl;

0<k<w
if (s > 1) then r[0] :=1 else r[0] := 0;

<

Figure 4: Radix based rank order filter algorithm using static data structures.

For all elements py with f[k] = 1 the remaining bits pg[i], n — 2 < i < 0 are not relevant for
further comparisons. Instead bit pg[n — 1] is used for further comparisons and will guarantee
that each element pp once found to be bigger or smaller than r remains bigger or smaller.
Thus if f[k] = 1 then the precalculated element bit pp[k] is set to pg[n — 1], else it is set to
the next bit pg[n — 2].

Main loop: The main loop is executed for all inner bit positions i, n — 2 < ¢ < 1. The
precalculated bits pp[k] are accumulated. The achieved sum s is compared against rank [
to determine the result value bit r[i] as described for the initialization phase: if (s >)
then r[i] := 1 else r[i] := 0. Then follows the update of f and pp. For each element pj if
r[i] # pp[k] then the status f[k] is set to 1 because the position of py respective r has just
been found, otherwise f[k] is kept. If f[k] remains O during the update then pp|[k] is set to
the next element bit pg[¢ — 1] to prepare further comparisons, otherwise pp[k] is kept because
the ordering of pj respective r is known.

Termination phase: The termination phase is equal to the first part of the main loop with
i = 0. After evaluating r[0] the requested rank value r is known and the algorithm can
terminate without any further updates.

Special care has to be taken when implementing the accumulation step (e.g. s := > pplk])-
Adding single bits one after another to a sum s = (8,1, ..., 81, 8¢) of fixed size can dramatically
slow down the algorithm. A tree decomposition of the summing with reduced word length for
intermediate partial sums will remarkable increase efficiency.

Figure 5 shows an example of computing the median of the set C = {15,6,10,5,6} (I = 2,
w = 5). It follows directly the algorithm of Figure 4.

| =

f pp [pp / pp

Po=15 1|1 |1 |1 |— 1|1 |— 1| 1]|—]1]1
Pr=6:/0|1|1]0|—|0O]||1|—|0O}||1|—]0]lO
P2=10:|1|0|1|O0|— | 1|1 |— 1| 1]|—]|1]1
p3:5:0|1|0|1—>g i—>g g—>ig
Pa=6:0|1|1]O0|—|O]||1|—|0O||1|—]0]l O
s=2 / 325/ 324/ s =2

r[3] =0 r2]=1 r[l] =1 r[0] =0

Figure 5: Example: rank order filtering, P = {15,6,10,5,6}, [= 3 (median).

5 VLSI implementation

A functional hardware description of the GIPSi system has been developed using the VDHL
language. The functionality has been verified using a testbench also written in VHDL. This
testbench supplies real image data (TIFF images) and instruction sequences generated by the
GIPSi assembler to the functional model of GIPSi.

The ASIC implementation is based on a modern “concurrent design” approach. Starting with
the the functional description sucessive partitioning, floorplanning and synthesizing steps lead to
a first structural description of the system. This first description yields first physical parameters
with high accuracy. Critical parts in the design can be detected. Based on these first parameters
the structural description is iteratively refined. Regular structures in the design are elaborated
by means of data path and memory compilers. For underlying cells portable libraries are used
throughout the implementation which ease the change towards improved technologies.

A first GIPSi cell layout based on 0.6um structures has been achieved. The underlying refined
structural chip model has been has been tested using the data from the functional verification
(TIFF images, GIPSi instruction sequences). Preliminary parameters of the 0.6um layout are:

— 25.6 x 10° bit operations per second. — 512 processors on chip

— 64 kBit on-chip SRAM. — logic complexity: 132000 gates.
— silicon area: ca. 120 mm?. 5 Volt processor.

— system frequency: 50 MHz. 0.6 ym CMOS technology.

— 144-Pin ceramic PGA package.

6 Conclusions

The GIPSi system has been presented which is a parallel VLSI systemn designed for image
processing of line-scan image data. Basic low level algorithins have been implemented which
show very short execution times. A complex rank order filter suitable for SIMD processing has
been presented in detail.

These first implementations show that the GIPSi system architecture is flexible and can handle
various different linear and non-linear image preprocessing algorithms in real time.

Further investigations will analyze other algorithms e.g. from the image compression and digital
TV domain and extend the current architecture and thus the number of applicable algorithms.

References

[Ste83] Stanley R. Sternberg. Biomedical Image Processing. Computer, Seite 22-34, January 1983.
[Ree84] Anthony P. Reeves. SURVEY Parallel Computer Architectures for Image Processing. Com-
puter Vision, Graphics and Image Processing, 25:68-88, 1984.

[Kun83]
[FHS85]

[Wil8g]

[MKW+90]

[CS91]

[YKF94]

[Lan94a)

[Lan94b]

[GS92]

[Knu73]

S.Y. Kung. VLSI Array Processors Prentice Hall, Englewood Cliffs, NY, 1988.

A L. Fisher and P.T. Highnam. Real-Time Image Processing on Scan Line Array Proces-
sors. IEEE Workshop on Computer Architecture for Pattern Analysis and Image Database
Management, Miamy, FL, 1985.

S.S. Wilson. One Dimensional SIMD Architectures — The AIS-5000. In S. Levialdi, editor,
Multicomputer Vision, Academic Press, 1988.

H. Miyaguchi, H. Krasawa, S. Watanabe, J. Childers, P. Reinecke and M. Becker. Digital TV
with Serial Video Processor. IEEE Transactions on Consumer Electronics, Vol. 36, No. 3,
August 1990.

K. Chen and C. Svenson. A 512-Processor Array Chip for Video/Image Processing. In
H. Burkhardt, Y. Neuvo and J.C. Simon, editors, From Pizels to Features II, Parallelism in
Image Processing. ESPRIT BRA 3035 Workshop, Bonas, September 1990.

N. Yamashita, T. Kimura, Y. Fujita, Y. Aimoto, T. Manabe, S. Okazaki, K. Nakamura, and
M. Yamashina. A 3.84GIPS Integrated Memory Array Processor LSI with 64 Processing
Elements and 2Mb SRAM. ISSCC94, Session 15, Paper FA 15.2, 1994

B. Lang. Self Arbitrating Elements for Modelling Systolic Dataflow in Field Programmable
Gate Arrays. In Proceedings GI/ITG Workshop Anwenderprogrammierbare Schaltungen,
Karlsruhe, 1994.

Available via Internet: ftp://www.til.tu-harburg.de/pub/papers/la:ka.ps

B. Lang. The GIPSI System. Internal Report No. 9/94, Technische Universitdt Hamburg-
Harburg, Technische Informatik I, 1994.

Available via Internet: ftp://www.til.tu-harburg.de/pub/papers/la:gipsi.ps

Q. Gu and M.N.S. Swamy. A Binary Logic Synthesis Approach to the Bit-Level Imple-
mentation of Generalized Rank-Order Filters. 1992 IEEE Intl. Symposium on Circuits and
Systems. Vol. 1, San Diego, CA, May 10-13, 1992.

D.E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison
Wesley, 1973.

