Industry 4.0 Security Trust Anchors: Considering Supply Voltage Effects on SRAM-PUF Reliability

Pascal Ahr, Julian Dreyer, Marvin Reski, Christoph Lipps, Ralf Tönjes and Hans Dieter Schotten

27. ITG Fachtagung Mobilkommunikation Osnabrück 11 Mai 2023

Industrial Internet Of Things

- Intelligent networking of Machines and processes in industry
- Linking Big Data and the Internet of Things
- Internet as the core technology
- Sensible Data
- Things as small, energy-limited actors
- Industrial environment with different conditions

German Research Center for Artificial Intelligence

Physically Unclonable Function

"[...] physical entity whose behaviour is a function of its structure and the intrinsic variation of its manufacturing process" -Basel Halak-

٠

٠

٠

27. ITG – Industry 4.0 Security Trust Anchors: Considering Supply Voltage Effects on SRAM-PUF Reliability

Static Random Access Memory

- Volatile memory
- Included in almost every μC
- CMOS Technology \rightarrow Power loss \propto frequency

- Every cell stores one Bit
- 2 coupled inverter
- Bistable system

German Research Center for Artificial Intelligence

SRAM PUF

• Inverter are production related not identical

 $\rightarrow \mathsf{V}_{\mathrm{inversion}} \neq \mathsf{V}_{\mathsf{M}}$

• Startup-Value is probabilistic

- "strongest" inverter defines the state
- The further V_{inversion} is removed form the bisecting angle the stronger the preference is

German Research Center for Artificial Intelligence

Wired Communication Scheme

27. ITG - Industry 4.0 Security Trust Anchors: Considering Supply Voltage Effects on SRAM-PUF Reliability

Wired Communication Scheme cont.

27. ITG – Industry 4.0 Security Trust Anchors: Considering Supply Voltage Effects on SRAM-PUF Reliability

Experimental Setup

27. ITG - Industry 4.0 Security Trust Anchors: Considering Supply Voltage Effects on SRAM-PUF Reliability

Supply Voltage Evaluation Platform

27. ITG - Industry 4.0 Security Trust Anchors: Considering Supply Voltage Effects on SRAM-PUF Reliability

Uniqueness

$$HD_{inter} = \frac{2}{k \cdot (k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \frac{HD(R_i(n), R_j(n))}{n} \cdot 100\%$$

- *k*: number of chips
- R(n): *n* bit response
- HD: Hamming distance
- Best Value 50%

2.7V	3.3V	5.5V
41.81%	42.96%	32.56%

German Research Center for Artificial Intelligence

Uniformity

Uniformity =
$$\frac{1}{k} \sum_{i=1}^{k} r_i \cdot 100\%$$

- k: number of responses of same chip
- r_i : Hamming Weight of response
- Best Value 50%

2.7V	3.3V	5.5V
49.95%	49.3%	48.84%

German Research Center for Artificial Intelligence

Reliability

$$100\% - \text{HD}_{\text{intra}} = \frac{1}{k} \sum_{i=1}^{k} \frac{\text{HD}(R_i(n), R'_i(n))}{n} \cdot 100\%$$

- *k*: number of chips
- *R*(*n*): *n* bit response
- *R*['](*n*): response at different condition
- HD: Hamming distance
- Best Value 100%

2.7V	3.3V	5.5V
96.15	96.03%	97.02%

German Research Center for Artificial Intelligence

Conclusion

- A new SRAM PUF based secure wired communication scheme
 - SRAM PUF as a source of entropy
- Successful real world implementation
 - Low overhead
- SRAM PUF is influenced by supply voltage variations
 - But still sound properties

27. ITG - Industry 4.0 Security Trust Anchors: Considering Supply Voltage Effects on SRAM-PUF Reliability

THANK YOU

Pascal.Ahr@dfki.de

