

Sensor Networks for Forestry Applications operating with Limited Power Supply using LPWAN COTS Equipment

10.05.2023 – 27. ITG Fachtagung Mobilkommunikation

Martin Böhm and Diederich Wermser

Funded by 5G Smart Country (BMDV, FKZ: 45FGU117)

Smart Country

Ostfalia Hochschule für angewandte Wissenschaften - Hochschule Braunschweig/Wolfenbüttel · Salzdahlumer Str. 46/48 · 38302 Wolfenbüttel

Overview

- Context: Research Project 5G Smart Country
- Problems of Forest Sensor Networks
- Synchronizing Transmission Intervals
- Implementation of Scheduled Gateway Operation
- Evaluation and Future Work

Overview Subproject Smart Forestry

Forest Health Monitoring

From Sensor to Database

- Exemplified with LoRaWAN, Semtech UDP Packet Forwarder, MQTT and InfluxDB

From Sensor to Database

- Exemplified with LoRaWAN, Semtech UDP Packet Forwarder, MQTT and InfluxDB

- Battery
 powered
- How long last batteries actually?
- Directly attached or combined as single device (LoRaWAN/4G/5G Gateway)
- Powered in the forest using energy harvesting options such as solar power with battery

Cloud applications

Energy Yield from PV System compared to Power Consumption of LoRaWAN Gateway/LTE Equipment

Average watt-hours actually generated and theoretically consumed per day, measured between June 2022 and January 2023.

LoRaWAN Sensor Transmission Times

- Operational Phase
 - Random distribution of transmission times

LoRaWAN Sensor Transmission Times

- Operational Phase
 - Random distribution of transmission times

- Synchronized Operation
 - Gateway is activated and deactivated interval-based
 - Smart sensor transmission is synchronized to on-times
- Gateway is completely switched off
 - E.g., 55 minutes off-time;
 5 minutes on-time

Centralized Synchronizer for widespread Sensor Networks with multiple Gateways

Synchronizing Transmission Intervals for COTS Smart Sensors

- COTS smart sensors usually provide changing the transmission interval using downlink messages
- Synchronization Phase:
 - 1. Change transmission time within interval of each smart sensor
 - 2. Change gateway operation time
 - 3. Change transmission time to interval duration

m_{x,y} {m is the message; x is the message type identifier where

- *ctt* = change transmission time and
- cid = change interval duration; y is the smart sensor identifier}

Synchronizing Transmission Intervals for COTS Smart Sensors

- Distribute smart sensor transmission times to prevent interference
 - Especially with high density of sensors
- Length of the active window (on-time)
 - Bootup time LoRaWAN gateway + cellular communication
 - Distribution window of sensor transmissions
 - Transmission jitter

 $m_{x,y} \mbox{ \{m is the message; x is the message type identifier where \end{tabular}$

ctt = change transmission time and

cid = change interval duration; y is the smart sensor identifier}

Synchronizing Transmission Intervals for COTS Smart Sensors

- Repeat synchronization phase in adequate time intervals
 - Transmission jitter and clock drift in smart sensors
 - Each synchronization phase consumes additional power of end-devices
 - Maximum possible time interval, given timing imprecision of COTS smart sensors?

Transmission of Synchronization Messages using LoRaWAN Downlink Mechanisms

m_{x,y} {m is the message; x is the message type identifier where ctt = change transmission time, sd = sensor data, and cid = change interval duration; y is the smart sensor identifier}

Implementation of Scheduled Gateway Operation

- Experimental Setup mounted on a tree in a forest
 - 3x 30W, 60Ah battery
 - LoRaWAN/LTE Outdoor Gateway (Dragino DLOS8N)
 - Entire setup approx. consumes 4.8W —
 - Charge controller is monitored at 5-minute interval
 - 2-3 minutes for the gateway to become active in Chirpstack (middleware) after powered on
- Interval switch
 - 15 minutes on-time, 45 minutes off-time (75% off-time) _

Evaluation

- Variations in smart sensor transmission have been observed
 - Accuracy to the second to plus or minus several minutes
 - \rightarrow Chose gateway operation window not too small
 - \rightarrow Repeat synchronization phase
- Solution well-suited for periodical data collection
 - Not optimal for threshold-based sensors such as alarms e.g., wildfire monitoring
- Transmission interval can be reduced or increased based on amount of energy yielded

Summary and Future Work

- Average power consumption has been significantly further reduced
- Scheduled gateway operation and synchronized smart sensor transmission has been successfully implemented
- Compatible with existing COTS LoRaWAN gateways and smart sensors
 - No modification to (closed) firmware of the devices needed
- Distribute transmission intervals within on-time to prevent collisions
- Investigate impact of interval-based operation for ...
 - large (forest) area monitoring with multiple gateways
 - range extenders such as LoRaWAN Relays