Development and Validation of a Testbed for AI/ML QoS Prediction Algorithm Evaluation

Nick Turay Maciej Muehleisen Alex Palaios

[1] German Civil Code, "Amendment to the Road Traffic Act and the Obligation Insurance Act - Autonomous Driving Act," 2021-07

Motivation

- Law by the Bundestag: "Act on Autonomous Driving", 2021 [1]
 - Handles remote-supervision (incl. on-demand tele-operation)
- Caveat
 - Ensuring a communication link with sufficient Quality of Service (QoS)
- Predictive Quality of Service
 - Notification of upcoming changes to QoS
 - Prediction by (sim./emu. aided) Machine Learning (ML) models

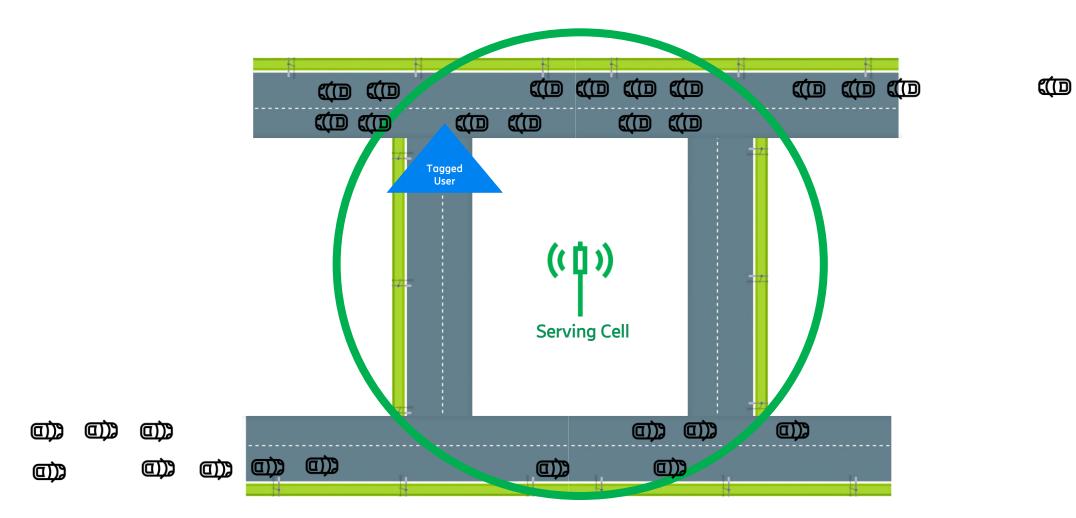
- To what extent does uncertainty in input simulation/emulation models impact the Machine Learning prediction performance?
- Sensitivity analysis methodology in this work inspired by [3]:
 - Definition of the system model: 1. Input model and ML model Machine Learning Model Input Model Input X – Emulator/ Simulator paramters Emulator Prediction Х Training /Simulator Output Y – Evaluated ML model predictions 2. *Generation of the input Y' for the ML model:* Emulator/Simulator \geq Sensitivity Analysis 3. Model training on the training set and prediction on the test set Evaluation of the model sensitivity S, i.e., variability of Y due to change in X 4. \geq A variety of methods available, e.g., regression analysis [4]
 - In this work: The Sensitivity Index proposed by Hoffman and Gardner [5]

| 2023-05-10 | Public | Page 3 of 24

[3] R. L. Iman and J. C. Helton, "Comparison of uncertainty and sensitivity analysis techniques for computer models," 1985; [5] F. Hoffman and R. Gardner, "Evaluation of uncertainties in environmental radiological assessment models," 1983 [4] A. Saltelli, et al., "Sensitivity analysis in practice: a guide to assessing scientific models," 2004;

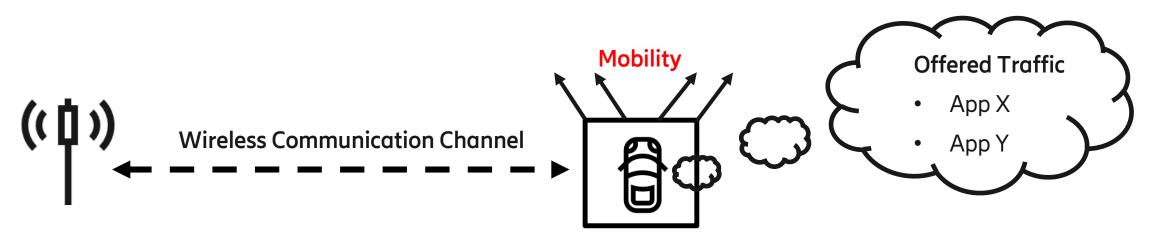
Υ

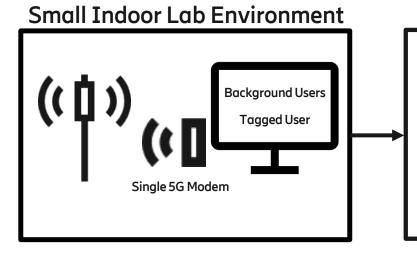
Story



Ó

Design Consideration





Abstraction

Wireless Communication Channel: Max. MCS* always used

Offered Traffic: Fixed packet size

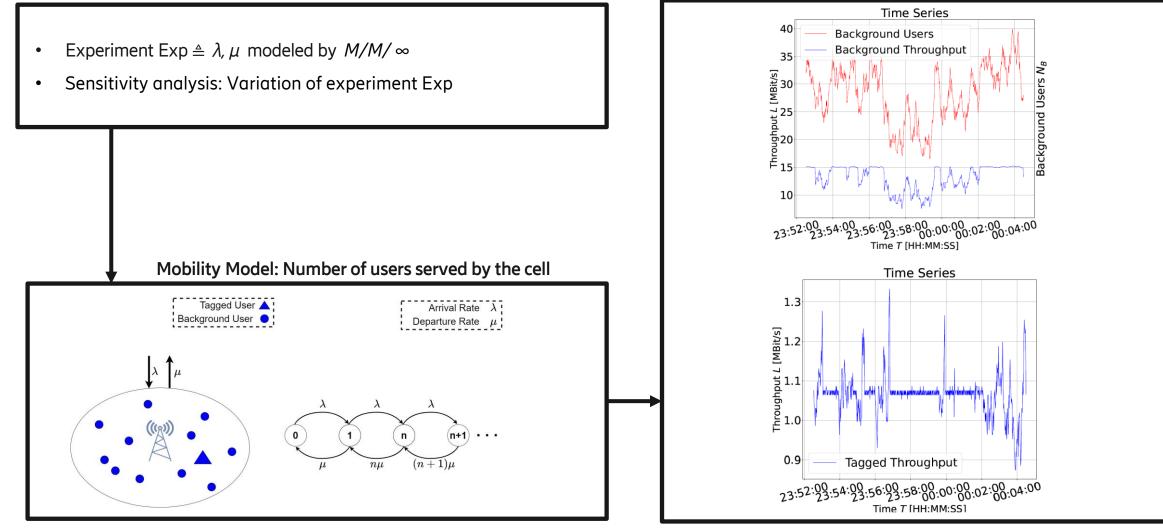
- Background Users: Poisson packet arrival
- Tagged Users: Fixed packet arrival period

Mobility: Number of users served by cell

*Modulation Coding Scheme (MCS): Constant SNR of 30 dBm (no inter-cell or intra-cell interference)

Network Traffic - User Mobility

Stochastic Process: Birth-death Markov chain

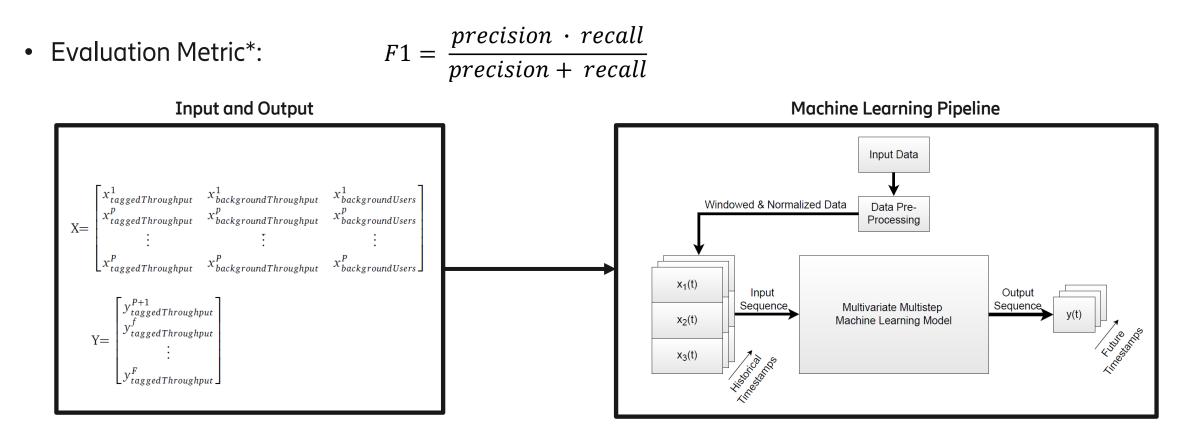


Model Input: User number and produced throughput

| 2023-05-10 | Public | Page 6 of 24

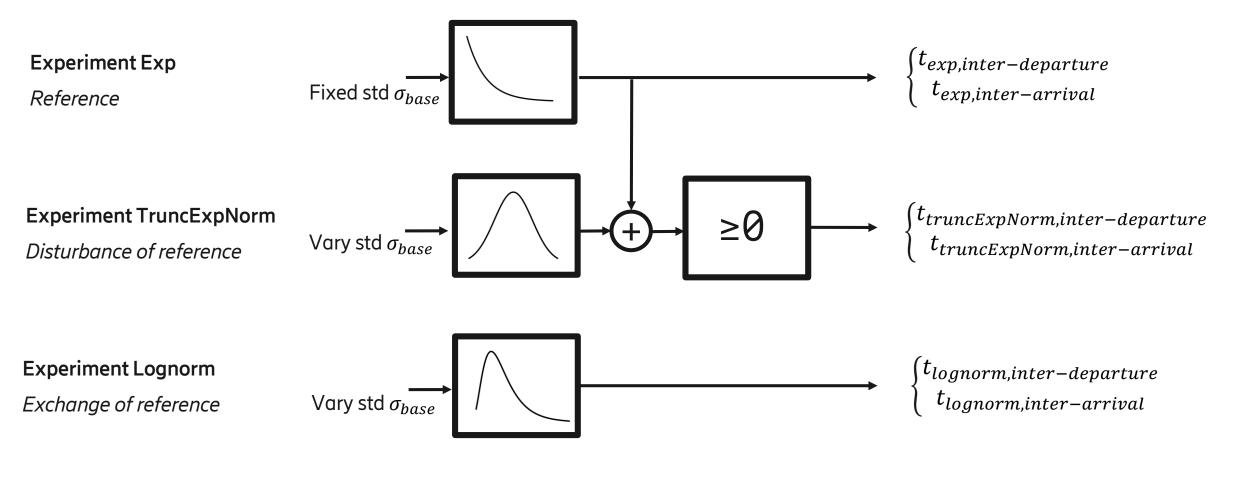
Machine Learning Pipeline

• Task: Binary classification Will the tagged user throughput be above a certain (1 Mbit/s) threshold?



Trials

Inter-departure/arrival distribution



Introduction of a variation factor f_{σ} to summarize the applied change in standard deviation *: $f_{\sigma} = \frac{\sigma_{base} + \Delta \sigma}{\sigma_{base}}$

| 2023-05-10 | Public | Page 8 of 24

* σ_{base} : Baseline value that serves as reference, $\Delta \sigma$: Change to baseline

Trials Consideration

• Fixed configurations for all experimental trials

Parameter	Value
Future prediction horizion	4 s
Mean number of users served by the cell	30
Trial time	8 h
Number of samples (training: 70 % testing: 30 %)	20160 10 batches of 864 samples

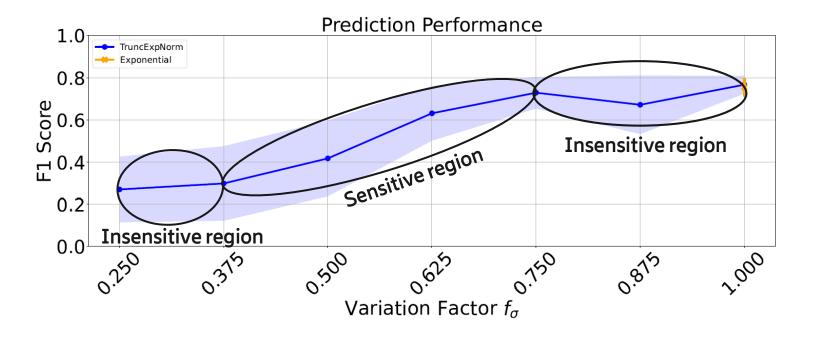
• Variation of a baseline standard deviation used for the inter-arrival/departure mobility distribution

Parameter	Experiment	Experiment	Experiment
	Exp	TruncExpNorm	Lognorm
Standard deviation variation factor f_{σ}	1	[0.25, 1]	[1, 8]

Results – Experiment TruncExpNorm

3

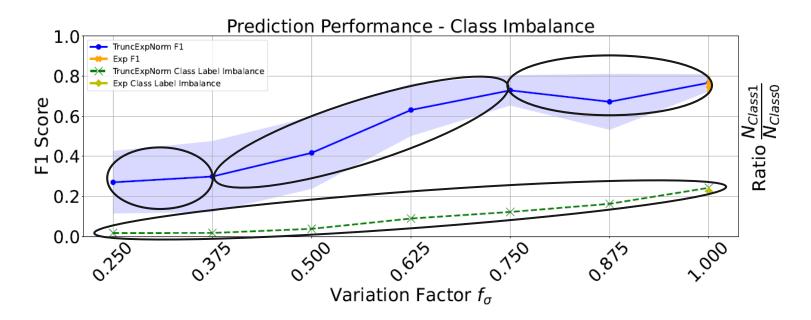
- ML Model behavior
 - Non-linearity of predictive performance in terms of F1 score
 - Different sensitivity regions



Results – Experiment TruncExpNorm: Class Ratio

- Class Ratio
 - Class 1: Tagged Throughput < 1 Mbit/s</p>
 - Class imbalance: Rare cases of Class 1
 - Class 1 sample size grows linearly

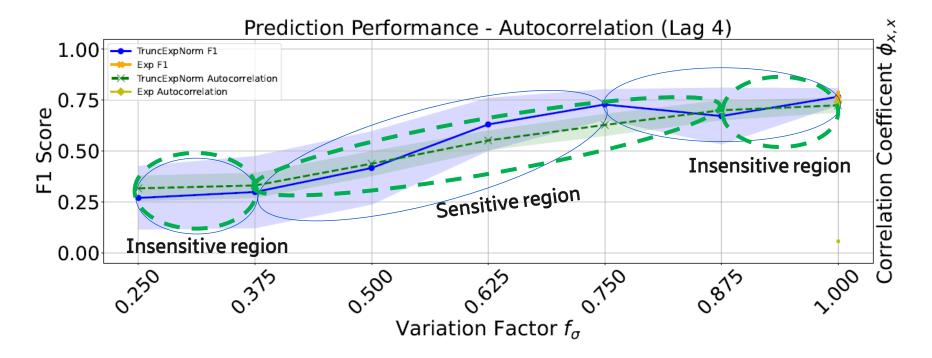
- Comparision to F1 score
 - Unlike F1 score; linear curve progression
 - Can be roughly described by one sensitivity region



Results – Experiment TruncExpNorm : Autocorrelation

- Autocorrelation of tagged user throughput
 - Coefficient $\phi_{\rm x,x}$ shows non-linear behavior
 - Different sensitivity regions

- Comparision to F1 score
 - Strong similarity between autocorrelation and F1 score
 - Unlike other aspects; similarity is consistent across variations

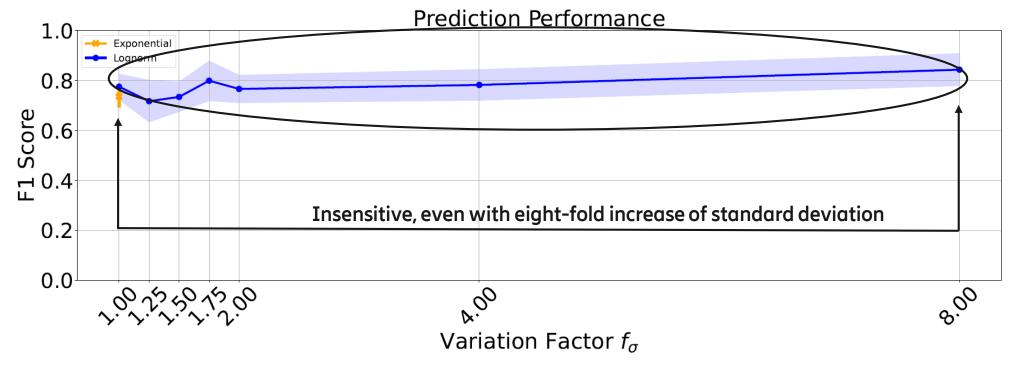


Results – Experiment Lognorm

- Increase in standard deviation
 - Experiment TruncExpNorm only allows to reduce the standard deviation
- Comparision of mobility models
 - Similar performance

• ML Model behavior

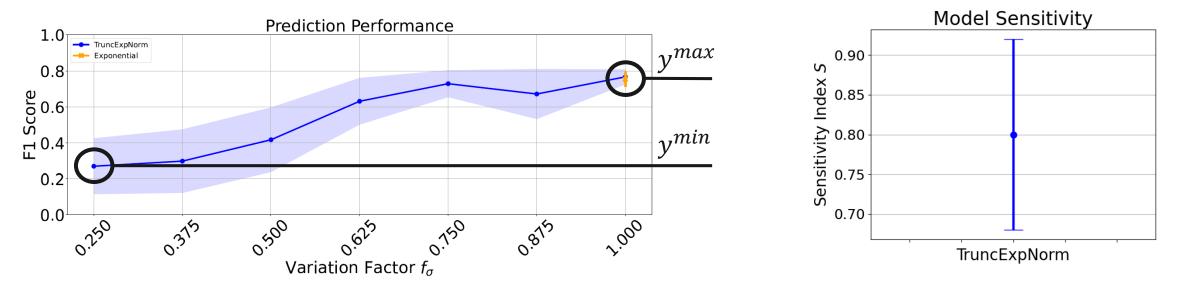
- Robust



Sensitivity Analysis

• Sensitivity index *S* proposed by Hoffmann and Gardner:

$$S = \frac{y^{max} - y^{min}}{y^{max}} \text{ with } S \in [0, 1]$$



- The ML model shows a high sensitivity with a 95 % confidence of $S \approx [0.7, 0.9]$
 - Observation holds for the considered value range of f_{σ} : $\sigma_{arrival} = [0.3s, 1.2s]$, $\sigma_{departure} = [9s, 36s]$
- Non-linear behavior only visible in graph

Conclusion

• To what extent does uncertainty in input simulation/emulation models impact Machine Learning prediction performance?

- We identified and applied suitable sensitivity analysis methods to approach this question
- We consider them applicable but **encourage others to also try them** to jointly come to a more tangible conclusion:
 - Identify where you have (stochastic) models in your AI/ML testbeds
 - Change the model (e.g. different distribution and/or temporal correlation) or adapt its parameters
 - Decide what should remain unchanged (e.g. the mean) to not change too much of the system
- Knowledge about sensitivity can be used for cautionary purposes, e.g.,
 - Building multiple models each for a specific range of values of a sensitive parameter
 - Focus research on a certain sensitive parameter to get a better understanding of the true probabilistic nature
- Outlook
 - Repeat with another model than the one for number of users in cell
 - Apply for more than one model/parameter at once, to determine relative significance/sensibility

Acknowledgment

This work was done in collaboration with the Technical University of Berlin

Special thanks to Prof. Dr. -Ing. Slawomir Stanczak

Thank You For Listining !

Configuration

• Fixed configuration for emulation/simulation, Machine Learning, and Radio Access Network

Model Parameter	Configruation
Packet Length <i>M</i> [Byte]	1500
Tagged User Throughput <i>L</i> [Mbit/s]	1.08
Mean Load ρ [%]	≈100
Mean inter-Departure Time [s]	36
Mean inter-Arrival Time [s]	1.2
Expectation Background User Number $E[N_B]$	30
Trial Time (Warm-Up Period) [h]([min])	8 (4)
Past Histroic Window <i>P</i> [s]	10
Future Prediction Horizon <i>F</i> [s]	4
Train:Test Datasize Ratio [%]	70:30
Number of testset batches N _{batch}	10 á 864

RAN Parameter	Configruation
Transmission Direction	Uplink
Transport Protocol	UDP
Max. Spatial Layers v_L	1
Max. Modulation Order Q_m	6
Max. Code Rate <i>R</i>	948/1024
Subcarrier Spacing Δf [kHz]	30
Channel Bandwidth <i>B</i> [MHz]	20
Max. Number of Resource Blocks N_{RB}	49 out of 51
Overhead Factor (Frequency Range 1)	0.08
Time Division Duplex UL-DL	2 out of 10 slots
Estimated Capacity \tilde{C} [Mbit/s]	15.564
Measured Capacity C [Mbit/s]	≈15.633

M/M/inf

Birth-death Markov process motivated by literature

- Various models for vehicle arrivals and departure in literature such as Poisson or Lognormal
- Not asking which model is the best, but what impact does model inaccuracy have on prediction accuracy (sensitivity analysis)
- Offered traffic Background User: Why Poisson traffic?
 - Palm's theorem: For many independent arrival processes, the overall process can be seen as a Poisson process
 - Assumption: Large number of mobile communication application services run by a user
- Offered traffic Tagged User: Why fixed?
 - Extremely simplified approach to model a video stream
 - Scheduler's point of view: The video stream is usually present in the form of large packets with constant size
 - Assumption: Each packet size correspond to the maximum transmission unit

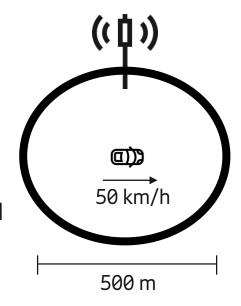
Mean Number of Users

- Mean inter-departure time of a vehicle: 36 s
 - Linear vehicle trajectory with constant velocity and cell diameter
- Mean number of users: 30
 - Selection of relatively few users
 - Reduced bandwidth to 20 MHz: Allows to saturate the system with a lower CPU load
- Mean inter-arrival time of a vehicle entering cell: 1.2 s
 - Selection based on mean inter-departure and mean user number
 - Little's Law for queuing systems:

$L = \lambda W$

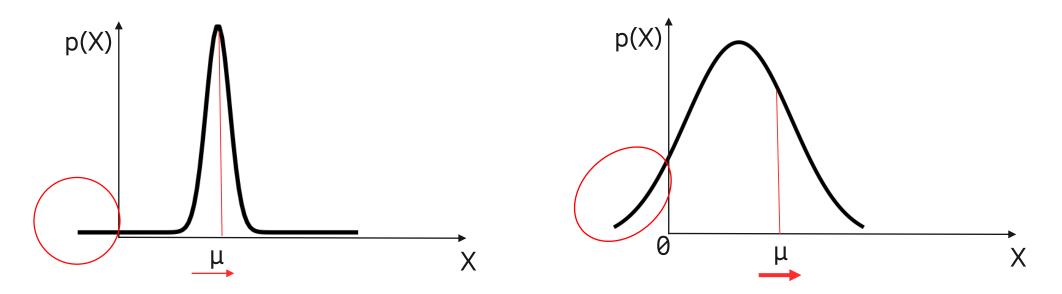
L – Average number of items within the system

- λ Average arrival rate of items into the sytem
- W Average time an item spends in the system



TruncExpNorm

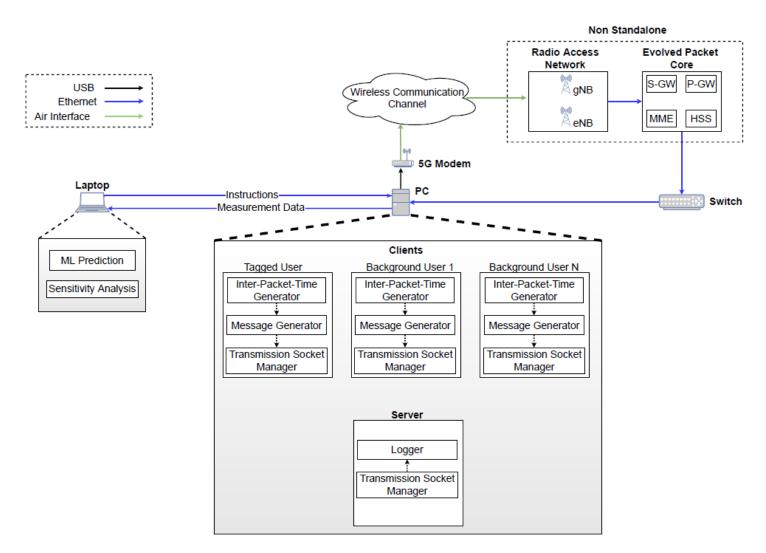
- Sum of two random variables, i.e., convolution of an exponential PDF and normal PDF
- Truncation to prevent negative inter-time samples
 - The mean becomes a function of the standard deviation
 - The higher the standard deviation, the more the mean is shifted in the direction of ∞ +



Sensitivity Analysis

- 1. Run prediction for each variation and collect max. and min. F1
- 2. Insert local extreme values into the formula for the sensitivity index and collect the sensitivity value
- 3. Repeat step 1 and 2 x times and collect x sensitivity indexes
- 4. Subdivide sensitivity values into k batches and calculate the mean of each individual batch
- 5. Estimate true mean using indivdual means
- 6. Use T-distribution (true standard deviation not known, samples size < 30) to get the confidence interval

Toolchain



Tele-operated Driving and Predictive Quality of Service

