Bounds for the Scalability of TLS over LoRaWAN

26. ITG Fachtagung Mobilkommunikation - Technologien und Anwendungen

Michael Rademacher¹, Hendrik Linka², Jannis Konrad², Thorsten Horstmann¹,², Karl Jonas²

¹ Fraunhofer FKIE
Cyber Analysis and Defense
Bonn, Germany

² University of Applied Sciences Bonn-Rhein-Sieg
Computer Science
Sankt Augustin, Germany

18.05.2022, Osnabrück
Motivation: Digitize public infrastructure i.e. Smart Metering

Reliable and secure communication is needed for smart city applications

- low-power wide-area networks (LPWANs):
 - licensed bands (NB-IoT, LTE-M, 5G mMTC)
 - license-exempt bands (LoRaWAN or SIGFOX)

- Scalability of LoRaWAN in license-exempt bands:
 - Interference
 - Duty cycle limitations

M. Rademacher et al., “Path Loss in Urban LoRa Networks: A Large-Scale Measurement Study” in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) [3]
Why and Why not LoRaWAN AND TLS?

1. TLS has become the standard for end-to-end secured communication.
2. There exists known vulnerabilities/attacks for LoRaWAN.
3. In **critical domains** (i.e. smart metering) TLS is a **mandatory requirement**. [1]

- **Increased battery usage due to cryptographic operations.**
- **Certificate handling.**
- **Protocol overhead** in combination with **duty cycle limitations** per band.

<table>
<thead>
<tr>
<th>MHz</th>
<th>863</th>
<th>865</th>
<th>868</th>
<th>868.6</th>
<th>869.2</th>
<th>869.6</th>
<th>870</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>0.1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>25mW</td>
<td>25mW</td>
<td>25mW</td>
<td>25mW</td>
<td>500mW</td>
<td>500mW</td>
<td>500mW</td>
<td>5mW</td>
</tr>
</tbody>
</table>

Duty-cycle and EIRP in the EU [4]
Which upper bounds (scalability) exists for the usage of TLS and LoRaWAN?

Scenario:

- **IP - TCP/UDP - TLS** is encapsulated as LoRaWAN Payload [5, 6]
 - Fragmentation at 250 Byte with 13 Byte Header LoRa Header.
- Focus on **full, mutual TLS handshakes** with 10 Byte data.

Assumptions:

- A wireless link is symmetric: the SF for the uplink and for the downlink is identical.
- There are no lost transmissions, neither due to collisions nor interference.
- The medium access is perfectly distributed (best usage of duty cycle).
- Uplink: a sensor uses a single band with a duty cycle limit of 1%.
- Downlink: the gateway uses a band with 10% duty cycle and a band with 1% duty cycle.

Method: A tool to calculate the airtimes and relate these to duty cycle limits.
Verification using an external SDR leads to marginal errors ($<< 1\%$).

All data, plots and the LoRa airtime modeling tool is **publicly available on github** [2].
Evaluated TLS versions and cipher suites.

Cipher suites marked with \times are part of the security concept presented in [1] and cipher suites marked with \bigcirc are added by us. The smallest and largest ciphers suites are marked with (S) and (L).

<table>
<thead>
<tr>
<th>Version</th>
<th>Cipher Suites</th>
<th>Elliptic curve</th>
<th>RSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>secp256r1</td>
<td>secp384r1</td>
</tr>
<tr>
<td>TLS1.2</td>
<td>TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>TLS_DHE_RSA_WITH_AES_256_CBC_SHA256</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
</tr>
<tr>
<td>TLS1.3</td>
<td>TLS_AES_128_GCM_SHA256</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>TLS_AES_256_GCM_SHA384</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>TLS_AES_128_GCM_SHA256</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>DTLS1.2</td>
<td>DTLS12_ECDHE-ECDSA-AES128-GCM-SHA256</td>
<td>\bigcirc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTLS12_ECDHE-ECDSA-AES256-GCM-SHA384</td>
<td>\bigcirc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTLS12_ECDHE-ECDSA-AES128-CBC-SHA256</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTLS12_ECDHE-ECDSA-AES256-GCM-SHA384</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transmission size of TLS handshakes for up- and downlink combined.

- DTLS is not beneficial for handshake sizes.
- DHE with RSA is considerably larger.

Cipher suites transmission sizes grouped by layer.

- The vast majority of data in the handshake is TLS itself, in particular, the certificates.
Each sensor uses a single band with a duty cycle limit of 1%:

- The airtime stays well below the desired limit of two days.
- In the uplink, the requirements in [1] can be fulfilled.
- For SF 11 and SF 12 the handshake will take more than 1 h which is the observation period for a duty cycle [4].
Maximum number of TLS handshakes in the downlink in 48h

Downlink: the gateway uses a band with 10% duty cycle and a band with 1% duty cycle.

- More complex since a gateway is connected in a 1:n relationship to sensors.
- The range to fulfill the requirements in [1] is significant.
 - Factor 2 between the smallest and largest cipher suite (all SF).
 - Factor 7 between the SF.
- Upper Bound: SF7 and TLS1.3-S = 7000 handshakes every two days
Minimum time-span between two handshakes using TLS1.3-S.

- **50.000 sensors per gateway:**
 - All SF: a handshake once a year.
 - SF 7 and 8: a handshake once a month.
Summary and future work

- Developed and published [2] a tool to assess upper bounds for duty cycle limitations in LoRa Networks for arbitrary traffic pattern.
- Evaluated the upper bounds for TLS and LoRaWAN, in particular, the requirements for smart metering in Germany [1]:
 - Bottleneck is the gateway: **Upper bound** of 7000 TLS handshakes every two days.

However, this work assumes:

1. No lost transmission (collisions, interference) → **Simulation**?
 - Hypothesis: A significant reduction for possible handshakes.
2. No additional data → **realistic traffic pattern**?
 - Hypothesis: DTLS is superior compared to TLS
3. Uniform SF per gateway → **realistic distribution for the SFs**
 - Orthogonal SFs vs. Airtime?

Source Code of this work: https://github.com/mclab-hbrs/lora-tls
Source Code propagation modeling: https://github.com/mclab-hbrs/lora-bonn

