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Motivation: Digitize public infrastructure i.e. Smart Metering (1)

M. Rademacher et al., ”Path Loss in Urban LoRa Networks: A
Large-Scale Measurement Study” in 2021 IEEE 94th Vehicular
Technology Conference (VTC2021-Fall) [3]

■ Reliable and secure communication is needed for smart city
applications

■ low-power wide-area networks (LPWANs):

■ licensed bands (NB-IoT, LTE-M, 5G mMTC)
■ license-exempt bands (LoRaWAN or SIGFOX)

■ Scalability of LoRaWAN in license-exempt bands:
■ Interference
■ Duty cycle limitations



Why and Why not LoRaWAN AND TLS? (2)

1. TLS has become the standard for end-to-end secured communication.

2. There exists known vulnerabilities/attacks for LoRaWAN.

3. In critical domains (i.e. smart metering) TLS is a mandatory requirement. [1]

→

1. Increased battery usage due to cryptographic operations.

2. Certificate handling.

3. Protocol overhead in combination with duty cycle limitations per band.
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Hypothesis and Methodology. (3)

Which upper bounds (scalability) exists for or the usage of TLS and LoRaWAN?

Scenario:
■ IP - TCP/UDP - TLS is encapsulated as LoRaWAN Payload [5, 6]

- Fragmentation at 250 Byte with 13 Byte Header LoRa Header.
■ Focus on full, mutual TLS handshakes with 10 Byte data.

Assumptions:
■ A wireless link is symmetric: the SF for the uplink and for the downlink is identical.
■ There are no lost transmissions, neither due to collisions nor interference.
■ The medium access is perfectly distributed (best usage of duty cycle).
■ Uplink: a sensor uses a single band with a duty cycle limit of 1%.
■ Downlink: the gateway uses a band with 10% duty cycle and a band with 1% duty cycle.

Method: A tool to calculate the airtimes and relate these to duty cycle limits.



LoRa airtime modeling tool. (4)
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■ Verification using an external SDR leads to marginal errors (<< 1%.)
■ All data, plots and the LoRa airtime modeling tool is publicly available on github [2].



Evaluated TLS versions and cipher suites. (5)

Cipher suites marked with 5 are part of the security concept presented in [1] and cipher suites
marked with m are added by us. The smallest and largest ciphers suites are marked with (S) and (L).

Version Cipher Suites Elliptic curve RSA

secp256r1 secp384r1 brainpoolP256r1 brainpoolP384r1 brainpoolP512r1 ED25519 2048

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 5(S) 5 5

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 5 5 5

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 5 5 5

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 5 5 5

TLS1.2

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 m(L)

TLS_AES_128_GCM_SHA256 5 5 5 5 5 m(S)

TLS_AES_256_GCM_SHA384 5 5 5 5 5(L) mTLS1.3

TLS_AES_128_CCM_SHA256 5 5 5 5 5

DTLS12_ECDHE-ECDSA-AES128-GCM-SHA256 m(S) m

DTLS12_ECDHE-ECDSA-AES256-GCM-SHA384 m m(L)

DTLS12_ECDHE-ECDSA-AES128-CBC-SHA256 m m
DTLS1.2

DTLS12_ECDHE-ECDSA-AES256-GCM-SHA384 m m



TLS versions and cipher suite handshake size comparison. (6)
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■ DTLS is not beneficial for handshake sizes.
■ DHE with RSA is considerably larger
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■ The vast majority of data in the handshake is
TLS itself, in particular, the certificates.



Consumed Airtime in the uplink for different SFs. (7)
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Each sensor uses a single band with a
duty cycle limit of 1%:

■ The airtime stays well below the desired
limit of two days.

■ In the uplink, the requirements in [1] can
be fulfilled.

■ For SF 11 and SF 12 the handshake will
take more than 1 h which is the
observation period for a duty cycle [4].



Maximum number of TLS handshakes in the downlink in 48h (8)
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Downlink: the gateway uses a band with
10% duty cycle and a band with 1% duty
cycle.

■ More complex since a gateway is
connected in a 1:n relationship to
sensors.

■ The range to fullfill the requirements
in [1] is significant.

- Factor 2 between the smallest and
largest cipher suite (all SF).

- Factor 7 between the SF.
■ Upper Bound: SF7 and TLS1.3-S =
7000 handshakes every two days



Minimum time-span between two handshakes using TLS1.3-S. (9)
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■ 50.000 sensors per gateway:

- All SF: a handshake once a year.

- SF 7 and 8: a handshake once a month.



Summary and future work (10)

■ Developed and published [2] a tool to assess upper bounds
for duty cycle limitations in LoRa Networks for arbitrary
traffic pattern.

■ Evaluated the upper bounds for TLS and LoRaWAN, in
particular, the requirements for smart metering in Germany [1]:

■ Bottleneck is the gateway: Upper bound of 7000 TLS
handshakes every two days.

However, this work assumes:
1. No lost transmission (collisions, interference) → Simulation?
- Hypothesis: A significant reduction for possible handshakes.

2. No additional data → realistic traffic pattern?
- Hypothesis: DTLS is superior compared to TLS

3. Uniform SF per gateway → realistic distribution for the SFs
- Orthogonal SFs vs. Airtime?

Source Code of this work:

https://github.com/mclab-hbrs/lora-tls

Source Code propagation modeling:

https://github.com/mclab-hbrs/lora-bonn

https://github.com/mclab-hbrs/lora-tls
https://github.com/mclab-hbrs/lora-bonn
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