

HOCHSCHULE OSNABRÜCK

UNIVERSITY OF APPLIED SCIENCES

MODELLING TIME SYNCHRONIZATION IN WLANS IN OMNET++

MOBILKOMTAGUNG 2022

ANAS BIN MUSLIM, CAROLIN CHRISTOPH, RALF TÖNJES

Mobilkomtagung 2022 00 – Overview

HOCHSCHULE OSNABRÜCK

UNIVERSITY OF APPLIED SCIENCES

Overview

- 1. TSN AND ITS COMPONENTS
- 2. GENERALIZED PRECISION TIME PROTOCOL (GPTP)
- 3. GPTP IN WIRELESS TSNs
- 4. OMNET++ MODELLING & SIMULATIONS OF GPTP IN WLANs
- 5. CONCLUSION & FUTURE WORK

MOBILKOMTAGUNG 2022 01 – TSN

1. TIME SENSITIVE NETWORKING

MOBILKOMTAGUNG 2022 01 – TSN

WHAT IS TSN?

Time Sensitive Networking - TSN

Extensions to Ethernet Standard

- Majority of extensions to IEEE 802.1Q (Bridges and Bridged Networks)
- Primarily on Layer 2 (MAC and LLC)

TSN provides

- Sub millisecond latency
- Deterministic delays and bounded latency
- Data prioritization
- Synchronized networks with < 1 microsec time difference between devices

When complete, TSN standards will be compatible over

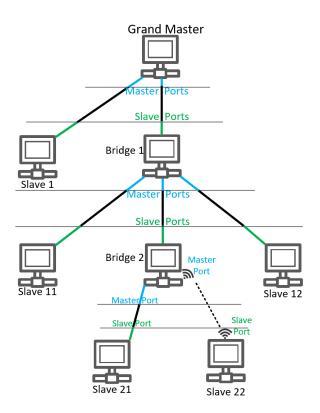
- Ethernet
- WLAN IEEE 802.11be (from 2024)
- 5G (R17 onwards)

MOBILKOMTAGUNG 2022 01 – TSN

WHAT IS TSN?		TSN component	Standard	Description
		Time Synchronization	IEEE 802.1 AS	gPTP for IEEE 1588v2
Synchronization Time Synchronization	Ultra Reliability Frame Replication, Stream Filtering etc	Ultra Reliability	IEEE 802.1CB	Frame Replication and Elimination for Reliability
			IEEE 8021.Qca	Path Control and Reservation
			IEEE 802.1Qci	Per-Stream filtering and Policing
			IEEE 802.1Qbv	Time Scheduled Traffic
	SN	Bounded Low Latency	IEEE 802.1Qav	Credit based Shaping
Bounded Low Latency Traffic Shaping Scheduling etc	Resource Management Stream Reservation, YANG models for devices management etc		IEEE 802.1Qbu	Frame Preemption
			IEEE 802.1Qch	Cyclic Queueing and Forwarding
			IEEE 802.1Qcc	Stream Reservation Protocol Enhancements
			IEEE 802.1Qcp	YANG model for Bridging
		Resource Management	IEEE 802.1Qcw	YANG model for Traffic Scheduling, Per-Stream filtering, and Preemption
			IEEE 802.1Qcbcv	YANG model for Frame replication and Elimination for Reliability

MOBILKOMTAGUNG 2022 02 – GPTP

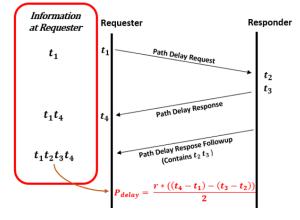
2. GENERALIZED PRECISION TIME PROTOCOL (GPTP)

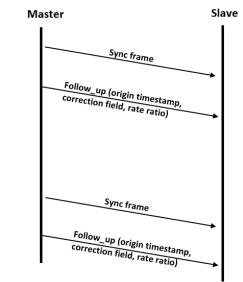

MOBILKOMTAGUNG 2022 02 – GPTP

GPTP

Generalized Precision Time Protocol

- Also called Precision Time Protocol 2.0 (PTP v2)
- A profile of Precision Time Protocol defined in IEEE 1588-2008 standard
 - PTP (v1.0) was defined in IEEE1588-2002 standard
- Works with master slave principle
- Slaves in network synchronize with their masters
- Bridges serve as slave as well as masters
- Each gPTP capable port is either
 - Slave
 - Master
 - Passive
- Grand Master of network chosen by Best Master Clock Algorithm (BMCA)


MOBILKOMTAGUNG 2022 02 – GPTP


GPTP

- gPTP for TSN networks is adopted under IEEE 802.1AS standard
- Uses
 - Sync, Follow_up messages for time synchronization information
 - Pdelay_request, Pdelay_response, Pdelay_response_followup for propagation delay calculations
- Propagation delay information needed for synchronization
- Rate ratio $rate ratio = \frac{f_{requester}}{f_{responder}}$
- Correction field

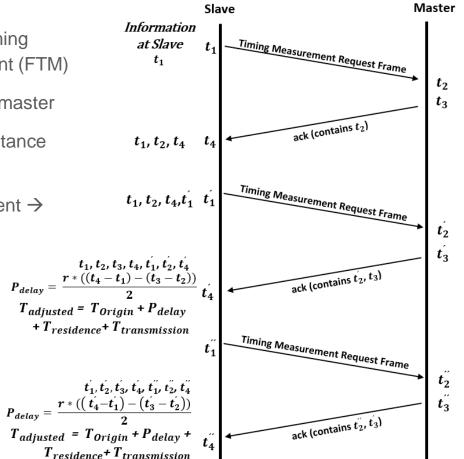
Propagation delay information exchange

Clock synchronization information exchange

MOBILKOMTAGUNG 2022 03 – GPTP IN WTSN

3. GPTP IN WIRELESS TSNs

MOBILKOMTAGUNG 2022 03 – GPTP IN WTSN

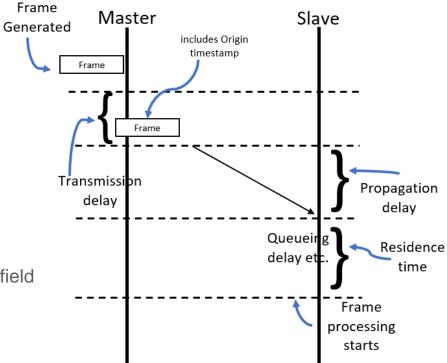


GPTP IN WIRELESS TSNs

- For wireless networks IEEE 802.1AS defines Timing Measurement (TM) and Fine Timing Measurement (FTM)
- TM \rightarrow for precise synchronization of slaves with master
- FTM → allows a network node to measure its distance from another node
- Mobility in wireless networks, dynamic environment → variable propagation delay
 - · Need to be calculated periodically
 - More often than in Ethernet TSN

Propagation delay measurement

procedure for WLAN



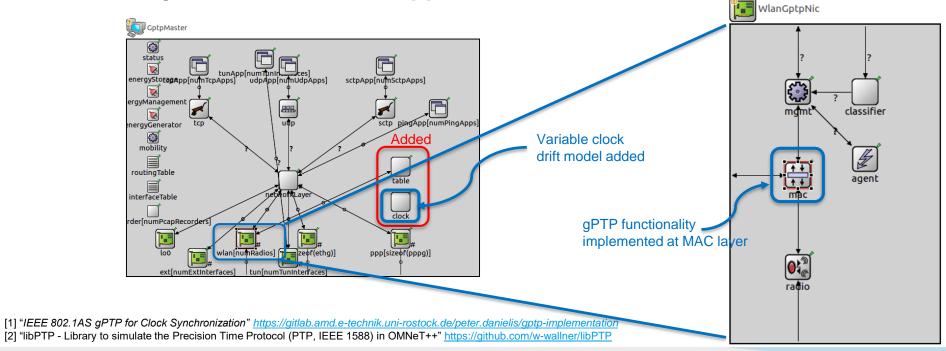
GPTP IN WIRELESS TSNs

Clock synchronization procedure for WLAN

(from our OMNeT++ Model)

 $T_{slave} = T_{Origin} + P_{delay} + T_{residence} + T_{transmission}$

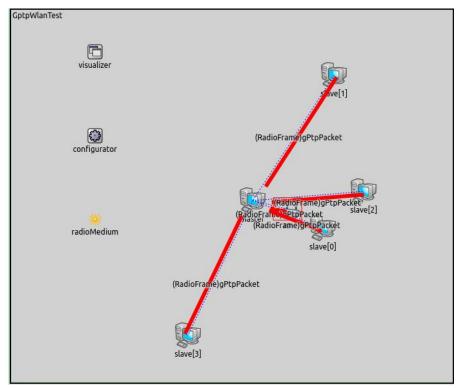
- · For synchronization at bridges/slaves
 - Propagation delay
 - Rate ratio
 - Correction field
 - Transmission delay
 - Residence time
 - Queueing delay
 - Queue wait time
- Slaves synchronizing to bridges also use Correction field in equation


4. OMNET++ MODELLING & SIMULATIONS OF GPTP IN WLANs

MOBILKOMTAGUNG 2022 04 – OMNET MODEL

OMNET++ MODELLING

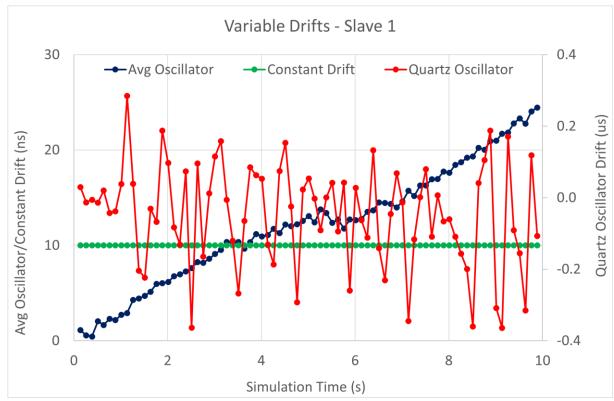
- Extension and modifications to "IEEE 802.1AS gPTP for Clock Synchronization" [1]
- WLAN Master, Slave, and bridge nodes
- WLAN TSN messages definitions
- Variable clock drift model based on Power Law Noise (extensions of LibPTP framework [2]) integrated with existing constant clock drift model in [1]



MOBILKOMTAGUNG 2022 04 – SIMULATIONS

SIMULATIONS

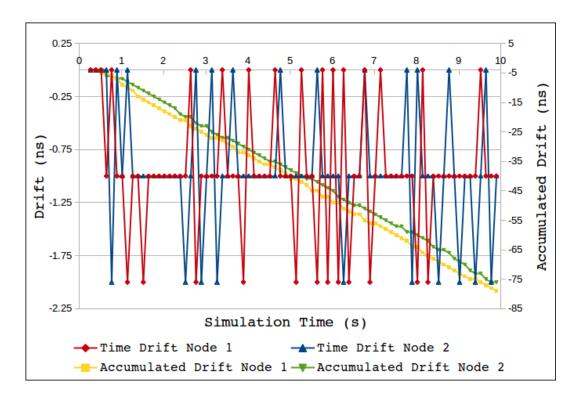
- · Simulations done with following parameters
 - Number of TSN nodes: [2, 5, 10, 15]
 - 1 master, rest slaves
 - Simulation area: 100m x 100m
 - Mobility model: Random waypoint
 - Waiting time: 0-5 sec
 - Movement speed: uniform[1,3] m/s
 - Simulation Time: 10 sec
 - Simulation time resolution: 1 ns
 - Timing measurement request interval: 125 ms
 - WLAN: IEEE 802.1g 54Mbps
 - Variable drift: 0-2ns drift per second (Average Oscillator Drift Model)
 - Drift values are between -2ns to +2ns meaning slave node lags or stays ahead of master node


MOBILKOMTAGUNG 2022 04 – FINDINGS

SIMULATION FINDINGS

Drift model comparison:

Average oscillator or Quartz Oscillator drift model provide realistic clock drift compared to constant clock drift or no drift at all


SIMULATION FINDINGS

Drifts of Slave 0 (node1) and Slave 1 (node 2) from 5 nodes simulation

Negative Drift (left side vertical axis) → both slaves lag behind master

Without synchronization (right side vertical axis) \rightarrow After only 10 seconds simulation, drift has accumulated ~ 80ns

 → Periodic synchronization becomes necessary for TSN networks even if device's clock drift is between -2ns & +2ns


SIMULATION FINDINGS

Time difference **before** synchronization (left vertical axis)

- → Slave lags or proceeds Master's clock in milliseconds
- → From -1.5ms to +1.5ms

Time difference **after** synchronization (right vertical axis)

- → Slave lags or proceeds Master's clock in nanoseconds
- → Between -0.25ns and 2.25ns

Time difference = Slave clock time - Master clock time

MOBILKOMTAGUNG 2022 05 – CONCLUSION

5. CONCLUSION

CONCLUSION AND FUTURE WORK

- Use of variable clock drift models instead of constant clock drift for TSN simulations for realistic scenarios
- Presented gPTP model implemented in Omnet++ based on INET framework can be used for time synchronization in Wireless TSN networks
- Simulation models for other Wireless TSN standards are needed e.g. Time Aware Shaper (TAS) etc
 - Available for Ethernet \rightarrow needs to be updated for wireless networks
- Next steps:
 - Integration of Ethernet time synchronization with WLAN time synchronization
 - Modelling IEEE 802.1Qbv, TAS, Credit based Shaper (CBS) for wireless TSN
 - A complete framework for Wireless TSN simulations

MOBILKOMTAGUNG 2022 THANK YOU

THANK YOU FOR YOUR ATTENTION!