26. ITG-Symposium on Mobile Communication – Technologies and Applications Session 4 – Full Paper Talk

Improving Connectivity In Multipath PLMN Setups: An MPTCP Scheduler Using Link Quality Indicators

Carrier 3

René Helmke, Stefanie Thieme, Bertram Schütz Improving Connectivity In Multipath PLNM Setups: An MPTCP Scheduler Using Link

Quality Indicators

Fraunhofer FKIE

MPTCP

- MultiPath Transport Control Protocol (MPTCP) [2]
- First Version: RFC6824 (2013)
- Latest Version: RFC8684 (2020)
- TCP Extension: aggregate multiple links via TCP session bundling
 - Subflow

Application			
Transport (MPTCP)			
Network	Network	Network	
Data Link	Data Link	Data Link	
Physical	Physical	Physical	
Link 1	Link 2	Link 3	

MPTCP Subflow Scheduling

→Subflow may not migrate fast enough when connectivity drops

Related Work & Link Quality Measures

MPTCP scheduling for heterogeneous networks

- LAMPS [10] → minRTT + packet loss on transport layer
- QAware [11] → cross-layer metrics, device driver queue

Research Gap: Schedule via physical link quality measures

e.g.,

- Received Signal Strength Indicator (RSSI)
 - Correlation RSSI → packet loss [6]
- Link Quality Indicator (LQI) [7]
 - Formless metric \rightarrow LQI \in [0, 255]
 - (Commonly) based on RSSI, *!vendor-specific!*
 - Enrich link quality approximation

(e.g., packet error rates)

LQI as loss predictor for subflow scheduling? (mitigate loss-induced connectivity drops)

Contributions

C1: Cross-layer MPTCP scheduler using LQI as loss-predictor

- Goal: Mitigate loss-induced connectivity drops
- Extensible LQI based on live RSSI data from 4G modems
- MPTCP scheduler using LQI for subflow migration

C2: Emulative trace-based performance evaluation

- RQ: Does our scheduler reduce packet loss on the aggregate in comparison to minRTT?
- Real world trace: 3 hour train ride
 - Three german mobile carriers: RSSI, RTT, packet loss
- Virtual testbed, emulate link quality using NetEm

C1: Scheduler

Constructing the LQI

C1: Scheduler

Implementation

C2: Trace-based Evaluation

Methods – Research Question, Virtual Testbed, and Scenario

RQ: Does our scheduler reduce packet loss on the aggregate?

- Baseline: minRTT
- Sender → Receiver: 1.7 mbps tagged data stream (480p30 webcam)
- 3 hour train ride: replay trace for each link/carrier
 - Replay RTT, packet loss (NetEm) and RSSI
 - Downsampled 30s-median values
 - Collect aggregate RTT & packet loss, scheduling decisions

C2: Trace-based Evaluation

Methods – Inside the trace

René Helmke, Stefanie Thieme, Bertram Schütz Improving Connectivity In Multipath PLNM Setups: An MPTCP Scheduler Using Link Quality Indicators

C2: Trace-based Evaluation

Results & Analysis

Relative Packet Distribution across links, optimal scheduling choice for each sent packet & scheduler

Conclusion & Future Work

- RSSI-based LQI \rightarrow good loss-predictor for MPTCP scheduling
- Tradeoff: worse RTT (compared to minRTT)
 - Aggregate stability vs. performance
- Future Work:
 - Real-world case study
 - Multi-dimensional LQI promising, RSSI +...
 - RTT, transport-layer loss (LAMPS), device queue (QAware)

	An MPTCP Scheduler Using			
	Link Quality Indicators			
	René Helmke*, Stefanie [°] Fraunhofer FKIE - Cyber Analysis & Defense [°] Zandeerstek 5, 53177 Bong, Germany Email: rene.helmke@fkie.fraunhofer.de	Thieme°, Bertram Schütz° 'Osnabrück University – Institute of Computer Science Friedrich-Janssen-Str. 1, 49076 Osnabrück, Germany Email: {thieme, schuetz}@uos.de		
	Abstract—Varying Ink qualities among multiple Gorman PLMNs may load to significant differences in ONS within a single area. MUTC readels could balancing of multiple mobile links to compensate infrastructural differences between carriers. Yet, general purpose packet schedulers like minktir I task important measures to properly estimate link quality in mobile scenarios. Thus, we propose a cross-slover MUTC scheduler to improve general connectivity. Scheduling decisions are based on a self- constructed I QI that utilizes the physical layer RSX measure to originate I QI that utilizes the physical layer RSX measure to originate I QI that utilizes the physical layer RSX measure to originate I QI that utilizes the physical layer RSX measure to in improvements in RTX compared to militart, packet loss is considerably reduced. I. INTRODUCTION	46 36 26 Vertermine Inno		
	A keyatone of Public Land Mobile Networks (PLMNo) lies within well-planned and ma-wide deployments of modern infrastructure. Otherwise, high network coverage and consis- tent performance are not achievable. Data Collectol by the German Breitbandmessang ¹ indicate general availability gaps and differences in service across mobile carriers. Figure 1, e.g., visualizes the available service modes of three German PLMNs within an area of 5 km ² . As observed by [1], depen- dencies between QoS, carrier, and position seem to exist. To mitigate this problem we built a samila blatery-powered gateway combining multiple wireless links of different car- riers with multipath protocols. Amongst these protocols is MPTCP [2]. Is performance and resilience to link failure de- pends on the scheduling algorithm and application context.[3]. MPTCP's default scheduler [4] (minRTT) does not perform very well when traveilling across linge areas with varying link quality among network carriers. It selects a sublow based it until the congestion window in full [1]. Howevere, packet links in threel scenarios appears to be bursty [5]. This implies that a sublow's consension window may not be chausted	Fight Three PLMNs have betergeneous service correct and the service s		
)	in a feasible period of time to trigger migration, although other flows may provide a more robust link. In this case, the gateway's functionality may not be leveraged upon. To mitigate this issue, the redondnat scheduler included in the MPTCP Linux Kernel implementation [4] may be used. It sends every packet on all available subflows and, thus, always ¹ http://breithandmessing.dof.anreamicht-funkloch, accesset. 2020-02-12	Context-aware and application-dependent packet scheduling is deeply embodied within the research community around MPTCP. In the following, selected work is discussed, while a comprehensive list of schedulers is provided by Sayit et al. [3]. The authors of ProgMP [8] propose a programming model for implementing and evaluating MPTCP schedulers in a rapid prototyping scheme. Schedulers may be designed by using a programming language which provides high level abstrac-		

Improving Connectivity in Multipath PLMN Setups:

References

[1] J. Buckow, B. Schütz, and S. Thieme, "Investigation of the Benefits of Multipath Protocols in the Mobile Communication Sector," in *under review at Mobile Communication – Technologies and Applications; 26. ITG- Symposium*, VDE, 2022, pp. 1-6.

[2] A. Ford, C. Raiciu, et al., "TCP Extensions for Multipath Operation with Multiple Addresses," RFC 8684, Mar. 2020.

[3] M. Sayit, E. Karayer, et al., "Numerical evaluation of MPTCP schedulers in terms of throughput and reliability," in 2019 11th International Workshop on Resilient Networks Design and Modeling (RNDM), Oct. 2019, pp. 1-6.

[4] C. Paasch and S. Barre, "Multipath TCP in the Linux Kernel," 2011. [Online] Available: <u>https://multipath-tcp.org/</u> (visited on 2020/02/12)

[5] K. Jang, M. Han, et al., "3G and 3.5G Wireless Network Performance measured from Moving Cars and High-Speed Trains", in *Proceedings of the 1st ACM Workshop on Mobile Internet through Cellular Networks (MICNET09)*, 2009, pp. 19-24.

[6] N. Baccour, A. Koubâa, et al., "Radio link quality estimation in wireless sensor networks: A survey," ACM Transactions on Sensor Networks (TOSN), vol. 8, no. 8, pp. 1-33, 2012.

[7] "IEEE Standard for Local and metropolitan area networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)," IEEE Std 802.15.4-2011, Sep. 2011.

[8] A. Frömmgen, A. Rizk, et al., "A Programming Model for Application-Defined Multipath TCP Scheduling,", in *Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference*, 2017, pp. 134-146.

[9] S. Ferlin, O. Alay, et al., "BLEST: Blocking estimation-based MPTCP scheduler for heterogeneous networks," in *Proceedings of the 2016 IFIP Networking Conference*, May 2016, pp. 431-439.

[10]E. Dong, M. Xu, et al., "LAMPS: A Loss Aware Scheduler for Multipath TCP over Highly Lossy Networks," in Proceedings of the 24nd IEEE Conference on Local Computer Networks (LCN), Oct. 2017, pp. 1-9.

References

[11]T. Shreedhar, N. Mohan, et al., "Qaware: A Cross-Layer Approach to MPTCP Scheduling," in *Proceedings of the 2018 IFIP Networking Conference*, May 2018, pp. 1-9.

[12]S. McCanne and V. Jacobson, "The BSD Packet Filter: A New Architecture for User-level Packet Capture," in USENIX winter, vol. 46, Dec. 1993.

[13]B. Lantz, B. Heller, and N. McKeown, "A Network in a Laptop: Rapid Prototyping for Software-Defined Networks", pp. 1-6, Oct. 2010.

[14]A. Frömmgen, "Mininet/Netem Emulation Pitfalls: A Multipath TCP Scheduling Experience," 2017. [Online] Available: <u>https://progmp.net/mininetPitfalls.html</u> (visited on 2020/02/12)

[15]D. Kaspar, "Multipath aggregation of heterogeneous access networks," ACM SIGMultimedia Records, vol. 4, Mar. 2012.

