Evaluation of Mobile Connectivity when Aggregating Multiple Cellular Networks

Stefanie Thieme Jan-Niklas Buckow

Buckow Bertram Schütz

Institute of Computer Science Osnabrück University

18.05.2022

UNIVERSITÄT

Motivation

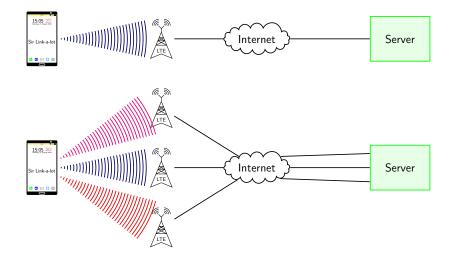
(a) Telekom

(b) Vodafone

(c) O₂

Motivation

(a) Telekom


(b) Vodafone

(c) O₂

(d) Aggregated

Motivation

Possible option: Using multipath protocols such MPTCP

► aggregation of LTE and WiFi

► aggregation of LTE and WiFi

New in this paper:

aggregation of multiple cellular networks

- ► aggregation of LTE and WiFi
- measurements performed in other countries (mainly USA)

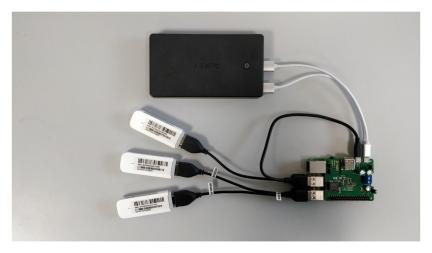
New in this paper:

- aggregation of multiple cellular networks
- measurements performed in Germany

- ► aggregation of LTE and WiFi
- measurements performed in other countries (mainly USA)
- ► using MPTCP is beneficial for long flows/connections

New in this paper:

- aggregation of multiple cellular networks
- measurements performed in Germany


- ► aggregation of LTE and WiFi
- measurements performed in other countries (mainly USA)
- ► using MPTCP is beneficial for long flows/connections

New in this paper:

- aggregation of multiple cellular networks
- measurements performed in Germany
- investigation of cellular network coverage

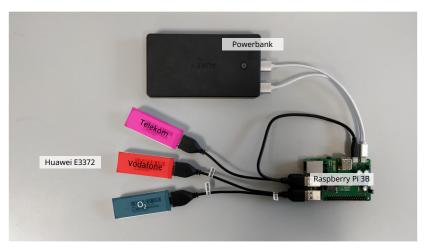

Measurement setup

Figure: Measurement equipment

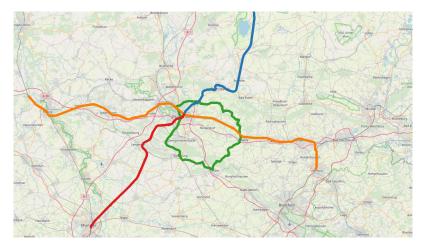

Measurement setup

Figure: Measurement equipment

Additionally used a GPS module for positioning

Figure: Map showing the measured routes

Measurements performed in December 2019

Combined packet loss traces

Figure: Packet loss trace on the measurement OS-MS-1

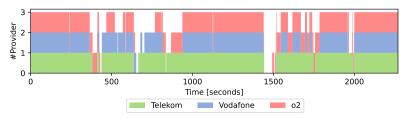


Figure: Packet loss trace on the measurement Safari-1

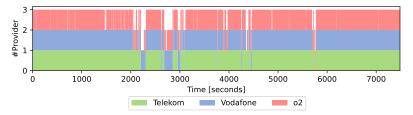
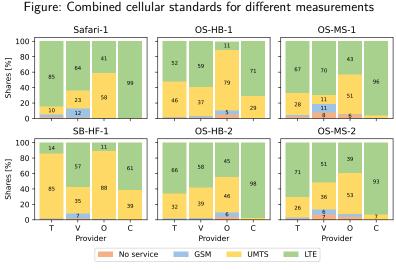



Table: Packet loss rates of different providers in [%].

		Т	V	0	T+V	T+O	V+O	T+V+O	MPTCP	
$\left(\right)$	Safari-1	5.45	3.36	3.19	0.17	1.17	0.23	0.00	0.92	
	OS-HB-1	5.19	4.28	12.28	1.11	1.46	2.30	0.58	0.57	
	OS-HB-2	3.76	1.60	11.15	0.29	1.29	0.71	0.12	0.41	
	SB-HF-1	2.82	5.73	2.61	1.55	0.84	0.31	0.22	0.12	
C	OS-MS-1	7.84	16.50	14.16	5.04	2.37	4.34	1.95	0.87	
	OS-MS-2	4.91	10.42	9.84	2.54	1.61	2.80	1.01	1.77	

T=Telekom, V=Vodafone, $O=O_2$

Combined cellular standards

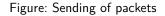
T=Telekom, V=Vodafone, O=O₂, C=Combined

- investigated mobile connectivity
- aggregated multiple cellular networks
- performed measurements on different routes

- investigated mobile connectivity
- aggregated multiple cellular networks
- performed measurements on different routes
- considerable reduction of packet loss
- ► theoretical gain differs from MPTCP scheduling results
- MPTCP gain benefits from retransmissions
- ► increased coverage with LTE

- investigated mobile connectivity
- aggregated multiple cellular networks
- performed measurements on different routes
- considerable reduction of packet loss
- ► theoretical gain differs from MPTCP scheduling results
- MPTCP gain benefits from retransmissions
- increased coverage with LTE

Cellular links with homogenous characteristics benefit from aggregation


Name	Means of transport	Waypoints				
-		Osnabrück→Belm→Wulften				
Safari		\rightarrow Schledehausen \rightarrow Melle				
Salari	car	\rightarrow Dissen a.T.W. \rightarrow Bad Iburg				
		→Hagen a.T.W.→Osnabrück				
OS-HB	train (RE9)	Osnabrück→Bremen→Osnabrück				
SB-HF	train (RB61)	Osnabrück→Salzbergen→Osnabrück				
3D-UL	train (RD01)	\rightarrow Herford \rightarrow Osnabrück				
OS-MS	train (RB66)	Osnabrück→Münster→Osnabrück				

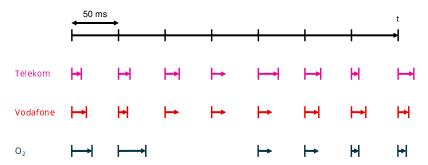
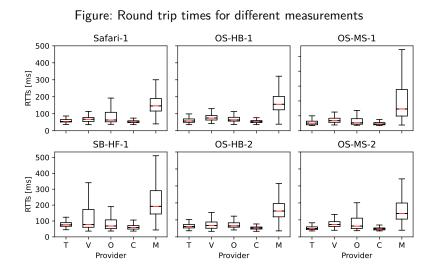

Table: Description of all considered routes.

Table: List of all measurements performed.

Name	Date	Duration	Route	Configuration modems			
Safari-1 21Dec19		2hr5min	Safari	LTE, UMTS, GSM			
OS-HB-1	22Dec19	2hr59min	OS-HB	LTE, UMTS, GSM			
OS-HB-2	22Dec19	2hr56min	OS-HB	Automatic			
SB-HF-1	23Dec19	3hr7min	SB-HF	LTE, UMTS, GSM			
OS-MS-1	23Dec19	1hr25min	OS-MS	LTE, UMTS, GSM			
OS-MS-2	23Dec19	1hr30min	OS-MS	LTE, UMTS, GSM			



- Packets are sent through all links simultaneously using UDP
- Sending interval: 50 milliseconds
- Echo server echos all packets

Appendix: Round trip times

T=Telekom, V=Vodafone, O=O₂, C=Combined, M=MPTCP

Table. Mean found the times for different providers in [seconds].									
	Telekom	Vodafone	O ₂	Combined	МРТСР				
Safari-1	0.23±1.61	0.20±1.08	$0.12{\pm}0.55$	0.07±0.13	2.46±16.28				
OS-HB-1	$0.15{\pm}0.67$	0.25±1.64	$1.57{\pm}8.33$	0.07±0.24	1.08 ± 5.24				
OS-HB-2	0.15±0.72	0.23±1.34	1.71 ± 8.43	0.06±0.12	0.67±3.09				
SB-HF-1	$0.18{\pm}0.96$	0.45±2.99	0.62±3.47	0.10±0.81	0.95±3.85				
OS-MS-1	0.23±1.56	0.92±3.68	$0.91{\pm}4.28$	0.23±1.49	9.81±30.56				
OS-MS-2	$0.15{\pm}1.18$	0.98±3.98	$1.40{\pm}5.52$	0.28±2.02	$2.89{\pm}10.89$				

Table: Mean round trip times for different providers in [seconds].

Table: Packet loss in urban (U) versus rural (R) areas [%]

	Shares		Telekom		Vodafone		O ₂		Combined	
Region	U	R	U	R	U	R	U	R	U	R
Safari-1	37	64	0.03	8.55	0.02	5.28	0.84	4.54	0.00	0.00
OS-HB-1	23	77	0.60	6.56	0.00	5.57	0.82	15.70	0.00	0.75
OS-HB-2	21	79	0.85	4.53	0.22	1.96	0.78	13.89	0.00	0.16
SB-HF-1	38	62	0.02	4.53	0.70	8.79	0.30	4.01	0.00	0.35
OS-MS-1	37	63	3.26	10.49	8.80	20.96	1.54	21.45	0.24	2.94
OS-MS-2	39	61	1.34	7.18	3.03	15.11	1.54	15.11	0.05	1.63