A ML based empirical Model for next Cell-ID Prediction

Sunil Hebbur Srikantamurthy

Technische Universität Chemnitz

Sunil-Hebbur-Srikantamurthy@etit.tu-chemnitz.de

Presentation Overview

- Motivation
- State-of-the-Art User Movement Prediction Methods
- Novel next Cell-ID Prediction Method
- ns3-Gym Simulation Model
- Performance Evaluation
 - Considered HO Schemes
 - Results
- Summary

Motivation

- Motivation:
 - Development of a next Cell-ID prediction method applying ML (Classification Algorithm)
 - Easy integration of the next Cell-ID prediction method into legacy mobile networks to support mobility management
 - Performance evaluation and comparison with traditional analytical prediction approaches
- Key features of the novel next Cell ID prediction method:
 - User specific
 - High prediction accuracy
 - Radio condition awareness
 - Adaptiveness (continuous learning)

State-of-the-Art - User Movement Prediction Methods

Reference	Proposed Model	Input	Output	
[7] 2011	Extended self-learning KF (Kalman Filter) and HMM (Hidden Markov Model)	Position, speed, direction	Next cell to be visited	
[8] 203	MLP-Multi Layer Perceptron and PNN- Polynomial Perceptron Network	Time, X and Y coordinates	X and Y coordinates	
[9] 2014	The J48 Tree model for generating C4.5 decision tree	Place, day, Manhattan and hamming distance, person correlation	UE Position	
[10] 2017	Use Voronoi diagram for positioning then use the Markov model	Region in a cell Time key Traffic Hub (KTH)	Probability of next region	
[11] 2017	SVM-based location prediction method	latitude, longitude, Distance and time	UE Position	
[12] 2017	Naïve Bayes	Received signal strength (RSS), X and Y coordinates	Probability of next location	
[13] 2019	Convolutional Neural Networks with transfer learning	Mobility Matrices	Next location to be visited	
[5] 2009	Mobility history database and mobility pattern matching	Number of users in the cell, Average UE dwell time and total number of HO	Probability of next HO	
[2] 2014	Moving direction prediction assisted HO scheme	Position, distance, direction	Target eNodeB	
[14] 2016	ESPIRIT and Kalman filter for time of arrival Tracking	Velocity, acceleration, direction and time.	X and Y coordinates	

Novel next Cell-ID Prediction Method

Problem statement:

• predict the user movement w.r.t. its cell association some time steps ahead

Solution approach:

- Supervised ML algorithm (Random Forest) & direct multi step forecast strategy
- Inputs:
 - Present Time
 - Serving cell-id
 - Serving cell RSRP and RSRQ
 - Neighboring cells RSRP and RSRQ
 - Positions of neighboring eNodeBs (optional)
- Outputs:
 - Predicted cell-IDs several time steps ahead (prediction horizon: 1, 5, 10 time steps)

ns3-Gym Simulation Model

Simulation Parameter Settings

Description	Value			
Number of simulated time instances	60			
Total number of eNBs	7			
Tx power of each eNB	0dBm			
Total number of UEs	21			
UE speed	1-1.5 m/s			
LTE MAC scheduler	Proportional fair scheduler			
Simulation area	150x150 sqm			
NS-3 environment event step time	1 sec			
Open AI gym event step time	1 sec			
Indoor radio propagation model	ITUR P.1238-7 [20]			
User traffic model	1 Default bearer (UDP) 2 Dedicated bearer (UDP+TCP)			
UE mobility models	Gauss-Markov, 2D random walk, Random direction model.			

Description	Value
Random Forrest ML Classier	N-estimator : 100; max-depth : 7; max features : 1

(1) HO scheme with ML-based next cell-ID prediction

(2) Event triggered and threshold based HO scheme

• Example: A3-event triggered HO decision

 $M_t + Of_t + Oc_t - Hys > M_s + Of_s + Oc_s + Off$

 $M_t, M_s = RSRP$ measurement results (target and serving cell) $Of_t, Of_s = Frequency$ specific offset (target and serving cell) $Oc_t, Oc_s = Cell$ specific offset (target and serving cell)

Drawback: does not consider user movement and load of neighboring cells

(3) UE movement direction prediction assisted HO scheme

Performance Evaluation – Results

(1) Impact on Radio Channel Conditions (MCS)

Page 11

60

50

50

50

60

60

TECHNISCHE UNIVERSITÄT CHEMNITZ

Performance Evaluation – Results

(2) Impact on average number of HOs and Ping Pong events

Cases	НО	Ping Pong		
Event triggered and threshold based HO scheme	2.90	0.14		tł
UE movement direction prediction assisted HO scheme	3.95	0.95		и О
History aware HO scheme	3.90	0.90		d
HO Scheme with ML-based next cell-ID prediction, W=1, RF model	3.62	0.81	L /	e
HO Scheme with ML-based next cell-ID prediction, W=1, KNN mod.	3.52	0.90		tł
HO Scheme with ML-based next cell-ID prediction, W=5, RF model	1.71	0.76		W
HO Scheme with ML-based next cell-ID prediction, W=10, RF model	2.09	1.04		

the number of HOs and Ping Pong events depend on the prediction window size *W*

(3) Prediction performance for different ML models & prediction windows

	ML Classifier	t+1	t+2	t+4	t+6	t+8	t+10
Accuracy		0.97	0.95	0.93	0.91	0.88	0.87
Recall rate	RF	0.97	0.95	0.93	0.91	0.88	0.87
F1 score		0.97	0.95	0.93	0.91	0.88	0.87
Accuracy		0.96	0.94	0.92	0.90	0.88	0.85
Recall rate	KNN	0.96	0.94	0.92	0.90	0.88	0.85
F1 score		0.96	0.94	0.92	0.90	0.88	0.85

Summary

- Presentation of a novel ML-based approach for estimating the next cell associations of a user over a prediction horizon *W*
- The integration of our approach into a simple HO scheme can lead to a better HO performance (w.r.t. the number of HOs and Ping Pong events) than conventional HO schemes
- Outlook: application of our approach to support Mobility Load Balancing (MLB) and Mobility Robustness Optimization (MRO)

Questions?

References

- 1. Aqib, Muhammad & Mehmood, Rashid & Albeshri, Aiiad & Alzahrani, Ahmed. (2018). Disaster Management in Smart Cities by Forecasting Traffic Plan Using Deep Learning and GPUs. 10.1007/978-3-319-94180-6_15. (www.researchgate.net/figure/Our-deep-neural-network-with-two-hidden-layers fig2_326538421)
- 2. Wang, Hsiu-Lang & Kao, Shang-Juh & Hsiao, Chung-Yi & Chang, Fu-Min. (2014). A moving direction prediction-assisted handover scheme in LTE networks. EURASIP Journal on Wireless Communications and Networking. 2014. 190. 10.1186/1687-1499-2014-190.
- 3. Youngchul Bae, "Robust Localization for Robot and IoT Using RSSI", Division of Electrical, Electronic communication and Computer Engineering, Chonnam National University, Yeosu 59626, Korea, 11 June 2019.
- 4. Fei, M., Fan, P. Position-assisted fast handover schemes for LTE-advanced network under high mobility scenarios. J. Mod. Transport. 20, 268–273 (2012) doi:10.1007/BF03325809
- 5. Ge, Huaining & Wen, Xiangming & Zheng, Wei & Lu, Zhaoming & Wang, Bo. (2009). A History-Based Handover Prediction for LTE Systems. International Symposium on Computer Network and Multimedia Technology, 2009. CNMT 2009. 1 - 4. 10.1109/CNMT.2009.5374706.
- 6. Wang, Ying-Hong & Chang, Jui-Lin & Huang, Guo-Rui. (2015). A Handover Prediction Mechanism Based on LTE-A UE History Information. 167-172. 10.1109/NBiS.2015.29.
- 7. T. Anagnostopoulos, C. Anagnostopoulos and S. Hadjiefthymiades, "Mobility Prediction Based on Machine Learning," 2011 IEEE 12th International Conference on Mobile Data Management, Lulea, 2011, pp. 27-30.
- 8. S. Parija, S. Nanda, P. K. Sahu and S. S. Singh, "Novel intelligent soft computing techniques for location prediction in mobility management," 2013 Students Conference on Engineering and Systems (SCES), Allahabad, 2013, pp. 1-4.
- 9. F. Mourchid, A. Habbani and M. E. Koutbi, "Mining user patterns for location prediction in mobile social networks," 2014 Third IEEE International Colloquium in Information Science and Technology (CIST), Tetouan, 2014, pp. 213-218.
- 10. J. Qiao, S. Li and S. Lin, "Location Prediction Based on User Mobile Behavior Similarity," 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen, 2017, pp. 783-786.
- 11. C. Xu and C. Xu, "Predicting Personal Transitional Location Based on Modified-SVM," 2017 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, 2017, pp. 340-344.
- 12. B. W. Yohanes, S. Y. Rusli and H. K. Wardana, "Location prediction model using Naïve Bayes algorithm in a half-open building," 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, 2017, pp. 15-19.
- 13. A. Sassi, M. Brahimi, W. Bechkit and A. Bachir, "Location Embedding and Deep Convolutional Neural Networks for Next Location Prediction," 2019 IEEE 44th LCN Symposium on Emerging Topics in Networking (LCN Symposium), Osnabrück, Germany, 2019, pp. 149-157.
- 14. M. Driusso, C. Marshall, M. Sabathy, F. Knutti, H. Mathis and F. Babich, "Indoor positioning using LTE signals," 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, 2016, pp. 1-8.

