

ML-Based C-DRX Configuration Optimization

Philipp Bruhn & Germán Bassi

Philipp Bruhn Ericsson Research 2021-11-03

Content

- Motivation, background, and problem
- Our machine-learning-based solution
- Results, insights, and lessons learned
- Conclusions and future work

Motivation, Background, and Methodology

Motivation

- Discontinuous Reception (DRX) allows UE to check for incoming downlink traffic intermittently to <u>reduce UE energy consumption</u>
- DRX creates a trade-off between UE energy saving and delay or throughput
- Number of possible DRX configurations very large [1],[2] \rightarrow difficult to choose

Goal of this work:

- Optimize DRX configuration per UE according to performance goals or intents using Machine Learning (ML) techniques
- Demonstrate value of energy-consumption-related feedback from UE

Connected Mode DRX

Long DRX cycle only

Default DRX setting according to 3GPP:

Long DRX cycle	160 ms
On-duration	8 ms
Inactivity timer	100 ms

FTP traffic model 3

- Packet size = 500 kB
- Mean inter-arrival time = 200 ms

Contextual Bandit

Approach:

Use contextual bandit to set optimal DRX configuration depending on UE energy consumption (and other) feedback

→ Realized using Vowpal Wabbit

Bandit behavior mainly affected by:

- Policy evaluation approach
 - → Direct method
- Exploration strategy
 - → Epsilon-greedy

"Contextual bandit is a machine learning framework designed to tackle [...] complex situations. [...] A learning algorithm can test out different actions and automatically learn which one has the most rewarding outcome for a given situation." [4]

Contextual bandit problem, where state and action effect reward [5].

"A learning algorithm can <u>test out different actions</u> and automatically learn which one has the most rewarding outcome for a given situation."

ϵ -greedy

- Parameter ϵ controls trade-off between exploration vs. exploitation (for $0 < \epsilon < 1$)
- Exploitation with probability 1ϵ : Bandit chooses action based on (assumed) best reward
- Exploration with probability ϵ : Bandit chooses action uniformly at random
- ϵ can be fixed, adjusted over time (" ϵ -decay"), or adapted in other ways, e.g., based on heuristics

Our choice: Linear " ϵ -decay" from 100% to 5% during first 1000 learning steps

3

- State and reward created based on 5 sec. observation (5 sec. averaging period)
- Bandit chooses among 45 actions corresponding to 45 DRX configurations (labeled as 1...45)
- Chosen action is translated into DRX configuration upon actuation in simulation

Results and Insights

Statistics of the DRX configurations

Experiment #1

• Traffic: FTP-3 model

• Intent: Energy minimization

• Reward ~ $Energy_{Monitor}^{-1} \in (0, 1)$

→ Compared to <u>default</u> DRX configuration, approximately 52% "useless" energy saving, but only 9% throughput loss.

Experiment #1

• Traffic: FTP-3 model

• Intent: Energy minimization

• Reward ~ $Energy_{Monitor}^{-1} \in (0,1)$

Simplified representation: Median and 95% confidence interval for 40 learning passes (with averaging window of 101 steps per simulation)

→ Reflects level of stability of learning

Experiment #2a

- Intent: Throughput maximization
- Reward $\sim \left(\frac{Throughput}{Max.Throughput}\right)^6 \in (0,1)$
 - → Non-linearity improves learning
- Observation: SINR
- Note: 37-71% correlation between throughput and SINR (mainly depending on the DRX cycle)

Experiment #3

- Intent: Performance-bounded energy minimization
- Constraint: Throughput min. 70 Mbps

• Reward
$$\begin{cases} \sim Energy_{Monitor}^{-1} & if \ TP \geq 70 \ Mbps \\ -1 & if \ TP < 70 \ Mbps \end{cases}$$

Compared to Exp. 2a:

 \rightarrow Throughput loss <u>2.4%</u>; Energy saving <u>26.2%</u>

Experiment #4

- Intent: Adjustable joint optimization
- Reward ~ $Energy_{Monitor}^{-1} * \left(\frac{Throughput}{Max. Throughput}\right)^{X}$
- Varying the exponent, we give more or less relevance to maximizing throughput

Closing Remarks

Takeaways

Contextual bandit fast and simple approach to select good DRX configuration according to UE feedback

Randomness in rewards increases uncertainty and impairs convergence/stability

Hard performance bounds cause rewards that make learning more challenging

Multiple types of users (e.g., multiple types of traffic and intents) can be handled simultaneously

Future work:

- Consider other traffic types (e.g., real-time video)
- Explore softer thresholds
- Perform safe exploration

<u>german.bassi@ericsson.com</u> <u>philipp.bruhn@ericsson.com</u>

Additional Slides

Statistics of the DRX configurations

Experiment #2b

• Intent: Delay minimization

• Reward
$$\sim \frac{Min. Delay}{Delay} \in (0, 1)$$

"Start delay" refers to delay of first segment of object transmission → Uncorrelated with SINR

