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Motivation

* Discontinuous Reception (DRX) allows UE to check for incoming downlink
traffic intermittently to reduce UE energy consumption

» DRX creates a trade-off between UE energy saving and delay or throughput
* Number of possible DRX configurations very large [1],[2] = difficult to choose

Goal of this work:

» Optimize DRX configuration per UE according to performance goals or intents
using Machine Learning (ML) techniques

» Demonstrate value of energy-consumption-related feedback from UE

2021-11-03 | Page4
[1] 3GPP TS 38.321 “NR; Medium Access Control (MAC) Protocol Specification” [2] 3GPP TS 38.331 “NR; Radio Resource Control (RRC) Protocol Specification”



Connected Mode DRX
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Related C-DRX Study
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[3] 3GPP TR 38.840 “Study on User Equipment (UE) Power Saving in NR”
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Contextual Bandit

Approach:

Use contextual bandit to set optimal DRX “Contextual bandit is a machine learning
configuration depending on UE energy framework designed to tackle [...] complex
consumption (and other) feedback situations. [...] A learning algorithm can test
> Realized using Vowpal Wabbit out different actions and automatically learn

which one has the most rewarding outcome

for a given situation.” [4]
Bandit behavior mainly affected by:

» Policy evaluation approach

. — =N —
- Direct method k j

Y
» Exploration strategy

A
- Epsilon-greedy VOWPAL WABBIT Contextual bandit problem, where state and action effect reward [5].
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[4] How to Build Better Contextual Bandits Machine Learning Models | Google Cloud Blog  [5] Contextual Bandits and Reinforcement Learning | Towards Data Science



https://towardsdatascience.com/contextual-bandits-and-reinforcement-learning-6bdfeaece72a
https://cloud.google.com/blog/products/ai-machine-learning/how-to-build-better-contextual-bandits-machine-learning-models

Exploration vs. Exploitation

“A learning algorithm can test out different actions and automatically
learn which one has the most rewarding outcome for a given situation.”

e-greedy

* Parameter € controls trade-off between exploration vs. exploitation (for 0 < € < 1)
 Exploitation with probability 1 — e: Bandit chooses action based on (assumed) best reward
 Exploration with probability e: Bandit chooses action uniformly at random

* € can be fixed, adjusted over time (“e-decay”), or adapted in other ways, e.g., based on heuristics

Our choice: Linear “e-decay” from 100% to 5% during first 1000 learning steps
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Observation-Action Cycle

« State and reward created based on 5 sec.
observation (5 sec. averaging period)

« Bandit chooses among 45 actions corresponding
to 45 DRX configurations (labeled as 1...45)

» Chosen action is translated into DRX
configuration upon actuation in simulation
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Results and Insights
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Throughput [Mbps]

Statistics of the DRX configurations

Throughput [Mbps] vs. Normalized energy for each configuration
(shaded region corresponds to 20)
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By choosing a certain DRX
configuration (a.k.a. action 1-
45) the UE experiences a
variable throughput/energy
consumption

The fine granularity of the
different DRX parameters
results in a large overlap
between configurations
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- Compared to default DRX configuration, approximately 52% “useless” energy saving, but only 9% throughput loss.
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Energyuonitor: Energy consumed for monitoring PDCCH (excluding rx on PDSCH and tx on PUSCH)
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Experiment #1
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Energymyonitor: Energy consumed for monitoring PDCCH (excluding rx on PDSCH and tx on PUSCH)



\

Experiment #2a
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Experiment #3

Normalized energy
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Energyuonitor: Energy consumed for monitoring PDCCH (excluding rx on PDSCH and tx on PUSCH)
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Experiment #4

Normalized energy
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Energyuonitor: Energy consumed for monitoring PDCCH (excluding rx on PDSCH and tx on PUSCH)
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Takeaways

Contextual bandit fast and simple approach to select
good DRX configuration according to UE feedback
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Future work:

Randomness in rewards increases uncertainty and

impairs convergence/stability » Consider other traffic types
(e.g., real-time video)
Hard performance bounds cause rewards that make « Explore softer thresholds

learning more challenging

 Perform safe exploration

Multiple types of users (e.g., multiple types of traffic

and intents) can be handled simultaneously
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Delay [ms]

Statistics of the DRX configurations

Delay [ms] vs. Normalized energy for each configuration
(shaded region corresponds to 20)
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20
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By choosing a certain DRX
configuration (a.k.a. action 1-
45) the UE experiences a

variable delay/energy
consumption

The fine granularity of the
different DRX parameters
results in a large overlap
between configurations

More in detail
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Experiment #2b

* Intent: Delay minimization

Min. Delay = (O 1)

* Reward ~
Delay

“Start delay” refers to delay of first segment of
object transmission = Uncorrelated with SINR
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