

A Study of LOS MIMO for Short-Range Sub-THz Wireless Links

Nebojsa Maletic, Lukasz Lopacinski, Meysam Goodarzi, Mohamed H. Eissa, Jesus Gutierrez and Eckhard Grass

3-4 November 2021

IHP – Leibniz-Institut für innovative Mikroelektronik

Leibniz Institute for high performance microelectronics

- Introduction and Motivation
- Sub-THz Comm.: Link budget and performance at 240 GHz
- Principles of LOS MIMO
- System Study: 3x3 and 4x4 MIMO at 240 GHz
- Conclusion and Future work

- The need for data rates is increasing
- New services and applications (data centers, data showers, WLAN/WPAN, backhaul, ...) are demanding more and more wireless data rates
- New frequency bands, mmWave, (Sub-)THz, with large chunks of free bandwidth allow for high data rates but there are challenges (path loss, signal processing, radio-electronics, etc)
- Several works recently reported short-range SISO links above 200 GHz demonstrating up to 100 Gb/s
- To breach the 100 Gb/s barrier and increase further the data rate, some form of MIMO multiplexing is required

- The need for data rates is increasing
- New services and applications (data centers, data showers, WLAN/WPAN, backhaul, ...) are demanding more and more wireless data rates
- New frequency bands, mmWave, (Sub-)THz, with large chunks of free bandwidth allow for high data rates but there are challenges (path loss, signal processing, radio-electronics, etc)
- Several works recently reported short-range SISO links above 200 GHz demonstrating up to 100 Gb/s
- To breach the 100 Gb/s barrier and increase further the data rate, some form of MIMO multiplexing is required

Line-of-sight MIMO multiplexing

Sub-THz Comm.: Link budget and Performance at 240 GHz

- Example of a link budget at TX-RX distance of 1-m in the J-band (240 GHz)
- Input parameters from measurement of real chips (Tx power, antenna gain, NF, etc)

Eissa et al. *TMTT* 2020 Maletic et al. *MTTW*'20

Carrier Frequency	240 GHz			
Distance	1 m			
Bandwidth	5 GHz	15 GHz	25 GHz	35 GHz
Transmit Power	5 dBm			
TX/RX Antenna Gain	7 dBi			
TX/RX Lens Gain	14 dB			
Path Loss	-80 dB			
Implementation Loss	-8 dB			
Received Level	-41 dBm			
Thermal Noise	-77 dBm	-72.2 dBm	-70 dBm	-68.5 dBm
Noise Figure	15 dB			
RX SNR	21 dB	16.2 dB	14 dB	12.5 dB
Modulation	64-QAM	16-QAM	16-QAM	8-PSK
Required SNR @ BER = 10 ⁻²	19.8 dB	13.8 dB	13.8 dB	12.1 dB
Expected Data Rate	30 Gb/s	60 Gb/s	100 Gb/s	105 Gb/s

www.ihp-microelectronics.com | © IHP all rights reserved

Sub-THz Comm.: Link budget and Performance at 240 GHz

01.11.2021	6
------------	---

An nxn symmetrical MIMO link

Condition for max multiplexing gain

$$d^{2} = d_{opt}^{2} = p \cdot \lambda D/n$$
$$tr(\mathbf{H}(D)\mathbf{H}^{H}(D)) = n^{2}$$

Shannon capacity (Gaussian signaling)

$$C = \log_2 \det \left(\mathbf{I}_n + \frac{SNR}{n} \mathbf{H} \mathbf{H}^H \right)$$

Capacity of practical signaling

$$C = n \log_2 M - \frac{1}{M} \sum_{l=1}^{M^n} \mathbf{E}_{\mathbf{w}} \left\{ \log_2 \sum_{k=1}^{M^n} e^{-z_{l,k}} \right\}$$
$$z_{l,k} = \frac{\|\mathbf{H}(\mathbf{x}_l - \mathbf{x}_k) + \mathbf{w}\|_2^2 - \|\mathbf{w}\|_2^2}{\sigma_n^2}$$

Exemplifying MIMO configurations: 3x3 and 4x4 linear or planar

$$d_{opt}^2 = p \cdot \lambda D/n$$

3×3		4×4	
р	d _{opt} (cm)	р	d _{opt} (cm)
1	2.0412	1	1.7678
2	2.8868	2	2.5000
4	4.0825	3	3.0619
5	4.5644	5	3.9528
7	5.4006	6	4.3301
8	5.7735	7	4.6771
10	6.4550	9	5.3033
11	6.7700	10	5.5902
13	7.3598	11	5.8630
14	7.6376	13	6.3738
16	8.1650	14	6.6144

For particular *D*, several choices for *d*_{opt} exist!

www.ihp-microelectronics.com	© IHP all rights reserved
------------------------------	---------------------------

For particular dopt channel H has a full rank at several distances D

• E.g. *d*opt = 4 cm *D* = {34.9091, 38.4, 48, 54.8571, 76.8, 96, 192, 384} cm for a 3×3 MIMO link

9

Sub-THz LOS MIMO: channel eigenvalues and Shannon capacity

p = 11 and D = 1 m

Channel eigs.

Channel eigs.

 d_{opt} = 6.77 cm for 3×3 and 5.863 cm for 4×4

 $eig(\mathbf{H}(D)\mathbf{H}^{H}(D))$

Distance D (cm)

Distance D (cm)

 $C = \log_2 \det \left(\mathbf{I}_n + \frac{SNR}{n} \mathbf{H} \mathbf{H}^H \right)$

Sub-THz LOS MIMO: capacity of practical signaling

Practical signaling, e.g., M-PSK, M-QAM, M-PAM

Fixed d_{opt} = 6.77 cm for 3×3 and 5.863 cm for 4×4

SNR = 14 dB

SNR is not high enough to achieve max capacity for 4 b/s/Hz

11

- (Sub-)THz communication supports high data rates but there are challenges
- Several works have already demonstrated 100 Gbps at short-range using highly integrated radio front-ends
- A simple study for 3x3 and 4x4 LOS MIMO links at 240 GHz examined the effects of optimum antenna separation and communication distance on channel and capacity
- LOS MIMO has a potential to further increase the throughput towards 1 Tb/s
- Experimental demonstration of LOS MIMO at (Sub-)THz frequencies (e.g. 240 GHz) using proprietary radios as a future work

Thank you for your attention!

Nebojsa Maletic

IHP – Leibniz-Institut für innovative Mikroelektronik Im Technologiepark 25 D – 15236 Frankfurt (Oder) Phone: +49 (0) 335 5625 449 Fax: +49 (0) 335 5625 e-mail: maletic@ihp-microelectronics.com

www.ihp-microelectronics.com

Leibniz Institute for high performance microelectronics

Backup slides

Т

www.ihp-microelectronics.com | © IHP all rights reserved

Transmitter chip

- 130nm SiGe ft/fmax = 300/500 GHz (IHP)
- Zero-IF architecture for wideband performance
- Differential inputs
- RF bandwidth 35 GHz
- BB bandwidth 17.5 GHz
- Max gain 35 dB
- Psat 12 dBm
- DC power 1.24 W
- Area 7 mm sq.
- On-chip double folded dipole with LBE to enhance directivity
- Mounted on a PCB with plastic lens

[M. H. Eissa et al, "100 Gbps 0.8-M Wireless Link based on Fully Integrated 240GHz IQ Transmitter and Receiver", in proc. MTT-S IMS, Jun 2020]

15

Receiver chip

- 130nm SiGe ft/fmax = 300/500 GHz (IHP)
- Zero-IF architecture for wideband performance
- Differential outputs
- RF bandwidth 55 GHz
- BB bandwidth 27.5 GHz
- Max gain 41 dB (tunable 25 dB)
- Noise figure 15 dB
- DC power 0.85 W
- Area 5.1 mm sq.
- On-chip double folded dipole with LBE to enhance directivity
- Mounted on a PCB with plastic lens

[M. H. Eissa et al, "100 Gbps 0.8-M Wireless Link based on Fully Integrated 240GHz IQ Transmitter and Receiver", in proc. MTT-S IMS, Jun 2020]

www.ihp-microelectronics.com | © IHP all rights reserved

01.11.2021 16