NOKIA

The Role of Cognitive Autonomy in "5G and Beyond" Communication Networks

Christian Mannweiler, <u>Henning Sanneck</u>, Stephen Mwanje

Architecture & Management Group Nokia Standards München

Tutorial

25. Fachtagung Mobilkommunikation

Technologien und Anwendungen

VDE / ITG-Fachtagung

3. + 4. November 2021 Tagungsort "Hochschule Osnabrück" The Role of Cognitive Autonomy in "5G and Beyond" Communication Networks Outline

- Cognitive Autonomy
 - Definitions
 - Classic AI (for Reasoning) vs. Machine Learning (for Cognition)
 - Taxonomy
- Case Studies (Network Automation in 4G/5G RAN)
 - Anomaly Detection
 - Predictive Location-Aware Network Automation
 - (AI in Campus Networks)
- Al enabling areas for Cognitive Autonomy
- Outlook: Towards (beyond 5G) Cognitive Autonomous Networks (RAN)
- Takeaways

ΝΟΚΙΔ

The Need for Cognitive Autonomy in Communication Networks Definitions

Autonomous - able to act on its own, without dictation or rules from anyone else

 not necessarily able to reason based on its environment or even smart enough to make the best static decisions

Cognitive - able to reason and formulate recommendations for subsequent behaviour

o may however require the operator's approval

Self-Organizing – Achieve steady state without external control

- o automates the selection and execution of actions
- interprets events & context to determine the cause-effect relations.

3 © 2021 Nokia

Modelling Cognitive Decision Making A Perception-Reasoning pipeline

"Classic" AI: Tools for Autonomous Reasoning From discrete to probabilistic rules

Fuzzy Inference analysis for Handover

Bayesian network on radio events

Rules focus on decisions, perception is "built-in" at design/implementation

Cognition in Communication Networks Static model vs. learning from data

Classic AI: Model is available

- Static fixed rule set on discrete or continuous valued logic
- Adaptive to deployment by probabilities
- **Learning:** Happens if performance at task T as measured by performance measure P, improves with experience E^[1]
 - Parameterise a model (θ) with loss function J \rightarrow P=J(θ)
 - o Iteratively update model with experience E from data

$$\theta := \theta - \alpha \frac{\partial}{\partial \theta} J(\theta)$$

Expanded & New interfaces for standardization – data & model transfer

[1] adapted from Tom Mitchell (1997))

ΝΟΚΙΔ

Cognition vs. Autonomy

Autonomy

Taxonomy		Manual	Assisted	Partially automated	Automated	Partially autonomous	Autonomous
		Machine: None Human execution & supervision	Machine: assisted execution & supervision Human: partial execution	Machine: partial execution; Human: supervision via policy	Machine: execution; Human: supervision via policy	Machine: execution & partial supervision Human: policy & intent	Machine: execution & supervision; Human: intent-only
Cognition	+ Anticipate correlated events		Human experience	+ Machine prediction	+ Machine auto	ICK ase udy <u>Aachine</u>	+ Machine
	+ Anticipate individual events			+ Automatic pro-action	pro-action selection	, ediction of new policies	reasoning
	+ Context- ualize	Machine2huma visualization		etection Case Study	+ Machine St automatic re-actives selection	udy chine learning of new policies	+ Machine reasoning + General learning; +Trustworthiness
	+ Diagnose events	numano	Machine2human selective exposure	+ Machine mapping to causes (rules) +Automatic re-act	+ Human labelling of causes identified by machine	+ Model-free (Reinf- Learning) + Transfer learning	+ Machine explanation
	+ Correlate events	Human correlation	Machine correlation	+Automatic re-action	(n.a. – due to limited - scalability of automation		
	Detect an event	Human detection	Machine detection	+Automatic re-action	 feasibility of machine supervision in a system with low cognitive capability) 		

© 2021 Nokia 8

H. Sanneck, Janne Ali-Tolppa, Levente Bodrog, Szilard Kocsis, Benedek Schultz, Addressing 5G NM Challenges with ML, Industry keynote, 23. ITG Fachtagung Mobilkommunikation, 2018

Anomaly Detection Procedure

Context-aware learning of normal states, measuring anomalousness in diurnal behavior and correlation

Predictive Location-Aware Network Automation for Radio PLANAR The 5G network slicing testbed at Hamburg Seaport Study

A live testbed demonstrating 5G slicing at the Hamburg Harbor:

Three slices

Case

- eMBB: Local applications in the harbor
- URLLC: Traffic light control
- IoT: Emission sensor readings from barges
- Data collection ٠
 - Slice-specific BTS KPIs: PRB usage, throughput, latency etc.
 - **UE measurements** from up to three ships including position (by GPS), RSRP, RSRQ, ping etc.
 - Collected for 6 months every 5 seconds ~3M records

Predictive Location-Aware Network Automation for Radio Problem statement

- IoT requires high reliability
- In certain areas of the testbed, coverage and mobility issues are observed (for devices served by the IoT slice)
 - Shadowing effects and/or
 - Long distances from the base station
- Reliable service must be guaranteed, but without overprovisioning of resources or compromising the performance of the other slices

Predictive Location-Aware Network Automation for Radio Prediction of Mobility and QoS/RSRP

Radio Propagation Map:

- Created based on UE measurements (reported GPS position, RSRP)
- Using an FNN

Mobility Pattern Prediction (MPP):

- Positions reported by the barges
- Prediction of barge movement using a convolutional neural network

Input sequenceGround truthPrediction

Combining the mobility prediction with the coverage model, of 62200 sequences in a validation set, we were able to predict up to **90%** of the low-RSRP events and RLFs **40 seconds** ahead

Predictive Location-Aware Network Automation for Radio Closed-Loop Automation Evaluation with Simulation

A digital twin of the testbed setup is mirrored in a simulator

- Full 3D model of the city of Hamburg and especially the harbor area
- Network topology and configuration as in the real testbed
- Traces of the movement of the real barges are collected from the testbed and imported into the simulation scenario

Predictive Location-Aware Network Automation for Radio Closed-Loop Automation Evaluation with Simulation

The coverage issues of the real testbed can be **reproduced**:

- The simulator is connected to a cognitive network management experimental system, which does the ML inference and implements the closed-loop automation functions
- The mobility predictions from the MPP model are created for each ship, simulation's radio propagation model is used for modeling the RSRP
- Prediction 40 simulated seconds ahead

Predictive Location-Aware Network Automation for Radio Closed-Loop Automation Evaluation with Simulation

The digital twin is extended to simulate NR with beam forming

• Four beams per each of the two cells, with two antenna elements for two simultaneous beams

Predictive Location-Aware Network Automation for Radio Demo @ IEEE NOMS (Janne Ali-Tolppa, Marton Kajo)

https://www.youtube.com/watch?v=nMdBbLv2G98

Predictive Location-Aware Network Automation for Radio (PLANAR) Preventive Closed-Loop Optimization

QoS and RLFs can be predicted and prevented by:

- Optimizing the transmission power
- Beam forming
 - Activate or de-active beams
 - Tilting of individual beams

- Prediction improves robustness
 - Reduced need for overprovisioning of resources
 - More headroom for resource sharing between different network slices

Application of AI/ML methods to campus network automation to enable dynamic and autonomous industrial wireless networks and a flexibly reconfigurable production environment

NOKIA

Towards Cognitive Autonomous Networks 5G and Beyond (RAN)

LTE / early 5G **5G Evolution** Towards 6G Self Organizing Cognitive **Cognitive Autonomous** Network **Network Management** Network Learning management functions, Rule-based management functions, Management of training + Software Management Software Management (DevOps) Comprehension (C) С 111 Human2machine i/f Human2machine i/f Human2machine i/f SON operation CNM CNM CNM Management of training SON Mgmt (DevOn CNF CNF

Rule-based / data-driven network functions

NOKIA

Learning network functions

(embedded management)

Rule-based network functions

(C)NF: (Cognitive) Network Functions

Towards Cognitive Autonomous Networks 5G and Beyond (RAN)

LTE / early 5G Self Organizing Network

5G Evolution

Cognitive

Towards 6G

Cognitive Autonomous

NOKIA

The Role of Cognitive Autonomy in "5G and Beyond" Communication Networks Takeaways

- Cognition & Autonomy are crucial, separable properties
 - Understand system concepts and contexts to enable decision making at machine level
 - Actions can be taken at any step in the cognitive process
- Anomaly Detection case study
 - Leverage the potential of data, by comprehensive analysis \rightarrow high quality detection
 - Motivate Network Operations Experts to combine their knowledge with the machine-level → (semi-)supervised learning (augmented diagnosis)
- PLANAR case study
 - Separated (but chained) modeling of the network (QoS) and application (barges) mobility
 - Increased robustness by prediction of radio QoS degradation
 - Replica of physical testbed (digital twin) enabling to evaluate features (beamforming) not (yet) present in the testbed

The Role of Cognitive Autonomy in "5G and Beyond" Communication Networks Takeaways

- Al requires expanded (training data) and new (model management) standardized interfaces
 - Al Enabling Areas: Data → Execution, Inner-Al → Action; inter-Al & Governance
 - ETSI ISG ZSM WI12 defines the AI enablers within the ZSM architectural framework
- LTE/early 5G: SON \rightarrow 5.5G: Cognitive NM (CNM) \rightarrow 6G: Cognitive Autonomous Network (CAN)
 - Cognition & Autonomy penetrate the u- and c-plane
 - Al is the technology area to enable this
 - m-plane takes a new role (managing the AI on the u- and c-plane)
 - Process (integration / replacement of legacy functions)
 - Some SON and CNM functions remain

→ Performance improvement of existing network (management) functions & enabling of new functions

→ Human operator: shift from low value "execution" to high impact "supervision" tasks (simple, recurring problems are not visible any more → "simplification")

NOKIA

Towards Cognitive Autonomous Networks

Recent journal / conference publications & tutorials

- S. Mwanje, M. Kajo, J. Ali-Tolppa, Environment Modeling and Abstraction of Network States using Deep Clustering, IEEE Network special issue "AI for mobile networks" 2020
- M. Kajo, B. Schultz, Deep clustering of mobile network data with sparse autoencoders, IEEE NOMS 2020
- M.L. Mari-Altozano, S. Mwanje, S. Luna-Ramirez, M. Toril, H. Sanneck, C. Gijon, A Service-centric Q-learning Algorithm for Mobility Robustness Optimization in LTE, IEEE TNSM, 2021.
- A. Masri, T. Veijalainen, H. Martikainen, J. Ali-Tolppa, S. Mwanje, M. Kajo, Machine Learning Based Predictive Handover, IEEE IM 2021
- A. Banerjee, S. Mwanje, G. Carle, Optimal configuration determination in cognitive autonomus networks, IEEE IM 2021
- A. Banerjee, S. Mwanje, G. Carle, RAN Cognitive Controller, 2nd KuVS Fachgespräch on Machine Learning and Networking, 2020
- A. Banerjee, S. Mwanje, G. Carle, Game theoretic Conflict Resolution Mechanism for Cognitive Autonomous Networks, IEEE SPECTS 2020
- P. Kalmbach, P. Diederich, W. Kellerer, R. Pries, A. Blenk, sfc2cpu: Operating a Service Function Chain Platform with Multi-Agent Reinforcement Learning, IEEE IM 2021
- S. Mwanje, Towards Cognitive Autonomous Networks, Tutorial, IEEE NoF 2020
- S. Mwanje, Towards Cognitive Autonomous Networks, Tutorial, IEEE CNSM 2020

Towards Cognitive Autonomous Networks Network Management Automation for 5G and beyond

Stephen Mwanje Christian Mannweiler with contributions from additional authors

Towards Cognitive Autonomous Networks

Network Management Automation for 5G and Beyond

WILEY

Book structure and outline

https://www.wiley.com/en-us/Towards+Cognitive+Autonomous +Networks+%3A+Network+Management+Automation+for+5G+and+Beyond-p-9781119586388

Cognitive NM functions: inputs \rightarrow ML algorithm / rules \rightarrow outputs

Cognitive NM Function	Examples for applicable ML algorithm		
Load balancing / traffic steering	Metaheuristics (PSO*) / decision tree		
Coverage and Capacity Optimization	Reinforcement learning (QL*)		
Mobility robustness (MRO)	Reinforcement learning (QL*)		
Scaling in/out, down/up	Reinforcement learning; Graph Neural Nets		
Anomaly Detection \rightarrow Diagnosis \rightarrow Healing	Topic Modeling \rightarrow MLN* \rightarrow Utility Theory		
Network Function Chaining	Metaheuristics (genetic algorithms)		
LCM / (re-)configuration, (re-)placement	Metaheuristics (harmony search)		
Neighbour relationship setup (ANR)	n/a (rules)		
Resource ID allocation (beam/cell ID/RS)	Unsupervised learning (clustering)		
OAM connectivity / interface setup	n/a (rules)		
27 © 2018 Nokia + 500 5			

© 2018 Nokia 27

* PSO: Particle Swarm Optimization, QL: Q(uality) Learning, MLN: Markov Logic Networks

Example: Cell anomaly detection and diagnosis – ML Algorithms

Cognitive NM Function	Examples for applicable ML algorithm
Input selection	Genetic algorithms, PCA
Multi-dimensional non-normally distributed profiling	Clustering: k-NN, SOM, GNG
Anomaly level calculation	Multi-dimensional probabilistic distributions
Anomaly event aggregation	DBSCAN
Diagnosis	Decision theory, rulebases, different distance measures: Mahalanobis, Kullback- Leibler divergence or Hellinger
Augmented learning	Active learning, DBSCAN, k-NN

Augmented diagnosis

Synergetic exploitation of human-machine capabilities for fast and efficient analysis

Augmented diagnosis

Human

1. Labels a few examples of the major expected anomaly groups

- 3. Expands and refines the labeling:
 - Labels the previously unlabeled anomalies in the expected groups
 - Labels the anomalies in the unexpected groups

Use Case Example from a Major Operator

• Augmented learning → new cluster of intra- and inter-eNB Handover problems (distinct classes of anomalies that had not been discovered / analyzed yet)

Predictive Location-Aware Network Automation for Radio (PLANAR) Mobility prediction

Predictive Location-Aware Network Automation for Radio (PLANAR) Evaluation with location and radio environment combined

- 62200 sequences in the validation set
- Predicting RLFs 40 seconds ahead
- True positives: 97.6%
- False positives: 16.7% of predicted events
- We optimized for high true positive rate, since the corrective actions were non-intrusive
- In many of the examples classified as false positive, the actions were still justified

Predictive Location-Aware Network Automation for Radio Example Deployment Architecture

