

Mittelstand- 🗖 Digital 🧧 🛡

Flexible Data Acquisition with LoRaWAN and MQTT for Small and Medium-sized Enterprises

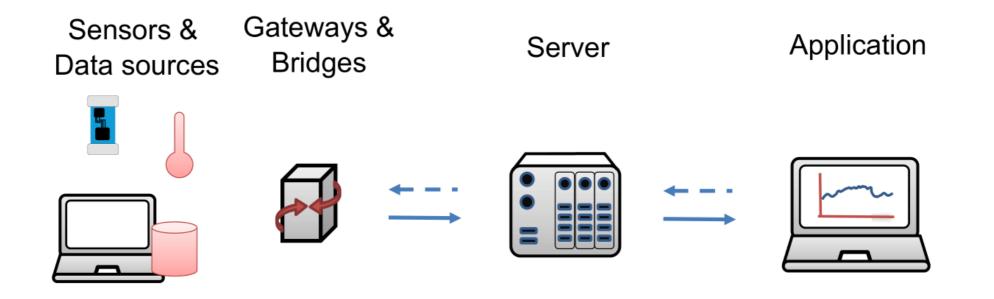
<u>Marco Cimdins</u>, Fabian John, Horst Hellbrück Technische Hochschule Lübeck

25. VDE/ITG Fachtagung Mobilkommunikation, 04.11.2021

Introduction

- Data acquisition, aggregation, and visualization is the first step towards digital transformation.
- Small and medium-sized enterprises (SME) have to choose from a variety of technologies that promise to provide a solution for their respective problem.
- We explain the theoretical principles behind data acquisition and transfer and give practical examples and suitable technologies for applications

Introduction II


- Propose a uniform approach that can be applied to SMEs
 - Digitize the respective application in a low-threshold way
 - avoiding high investment costs
 - seeing the data within a short period
- Solution based on open-source solutions
- Data stays within the solution to circumvent data privacy concerns

Gefördert durch

4

Proposed Approach

Contributions of this Paper

- Propose a flexible, simple infrastructure for data acquisition designed for use in small and medium-sized enterprises (SMEs)
 - LoRaWAN for sensor network data acquisition
 - Visualization provided by an Internet of Things (IoT) platform
- MQTT broker connects the LoRaWAN and server architecture
 - Enables data transfer from other sources
- Present and applications of LoRaWAN sensors
- Investigate throughput for applications that communicate via MQTT

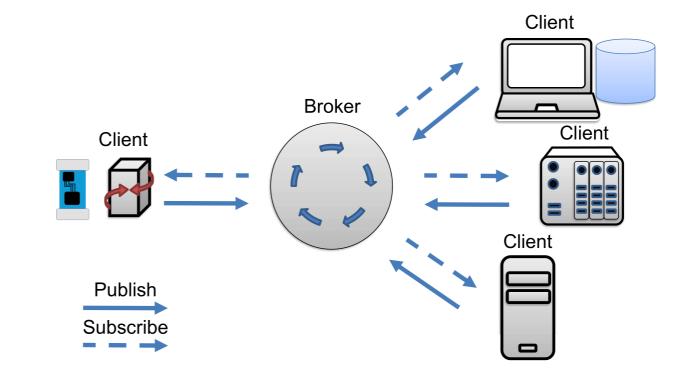


Gefördert durch

6

Concept

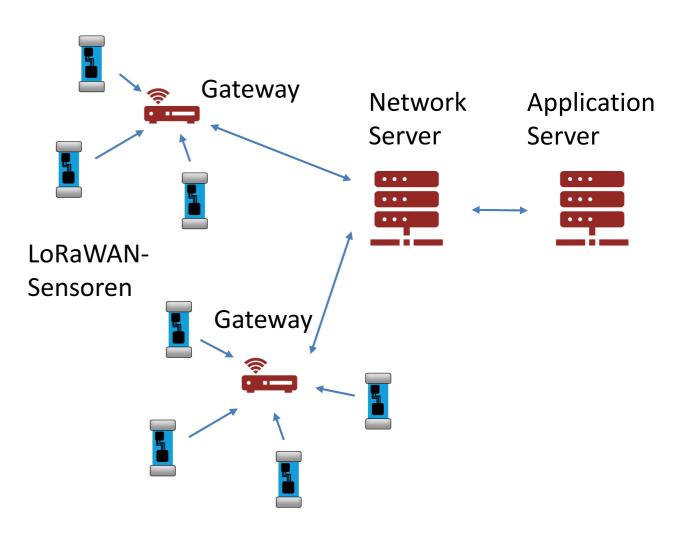
- Proposed solution is based on three main components
 - Data Hub
 - Data Acquisition with LoRaWAN
 - IoT Platform



7

Concept – Data Hub

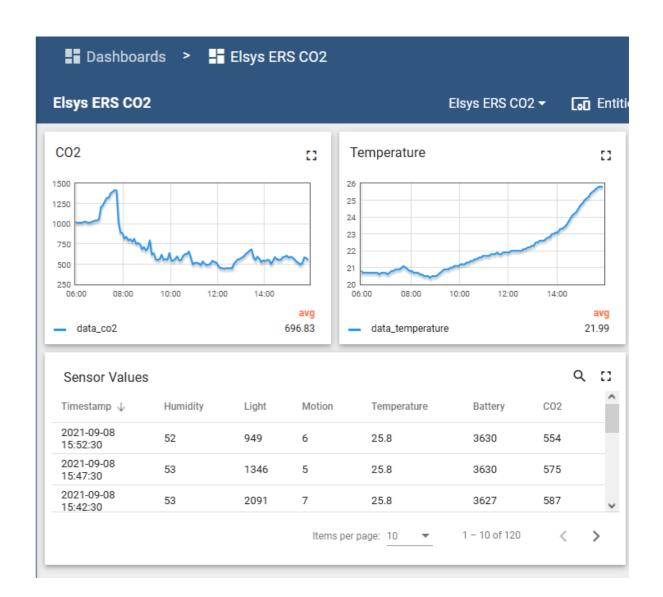
- MQTT Broker as data hub
 - Designed for connection of resourceconstrained devices
 - Low code footprint and bandwidth
 - Enables cross-system communication with publish & subscribe pattern
 - Clients publish data to a broker
 - Clients subscribe data from a broker
 - Topics for filtering messages of clients



8

Concept – LoRaWAN

- LoRaWAN for wireless sensor network
 - Easy deployment of battery operated sensors
 - Long range data transmission
 - Single gateway covers a campus of an SME
 - Integration of sensors via web interface
 - No further programming knowledge is required
 - Many ready-made LoRaWAN sensors available



Gefördert durch

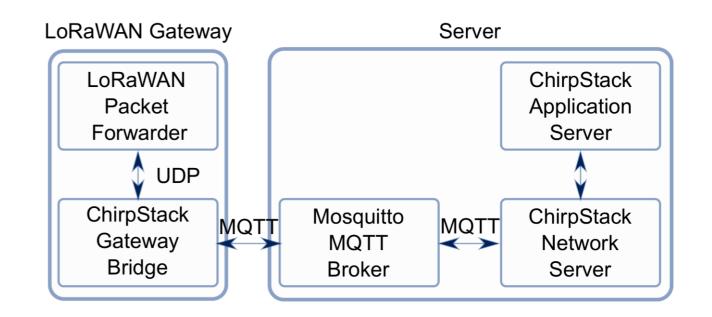
9

Concept – IoT Platform

- Deploy IoT platform to visualize measured data in dashboards
- SME monitor status of devices and visualize measurements with little effort
- Within IoT platform
 - Aggregate data from several sources
 - Further interfaces such as MQTT/REST for system integration

- Server
 - Synology DiskStation 718+
- LoRaWAN Gateway
 - Dragino LG308
 - SX1301 LoRa concentrator
 - Two SX1257 transceivers
- Network Setup
 - AVM FRITZ!Box 6820 LTE
 - TP-Link TL-SG105 5-Ports Gigabit network switch

- LoRaWAN Sensors
 - Elsys ERS CO2
 - Elsys ELT-2
 - Elsys ERS Sound
 - Elsys EMS Door
- Physical Sensor Nodes
 - RedPitayas
 - Embedded signal generator and oscilloscope with 2 analog input und output channels


Mittelstand- 🛛 👘 🕷

Gefördert durch

Implementation – Software I

- Mosquitto MQTT broker as a data hub
- ChirpStack (CS) as an open source LoRaWAN stack
 - CS Gateway bridge is installed on the LoRaWAN gateway
 - CS Network and Application Server on the NAS

Mittelstand- 🛛 👘 🕷

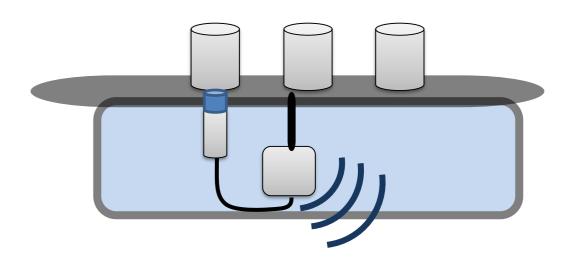
aufgrund eines Beschlusses des Deutschen Bundestage

Gefördert durch

Implementation – Software II

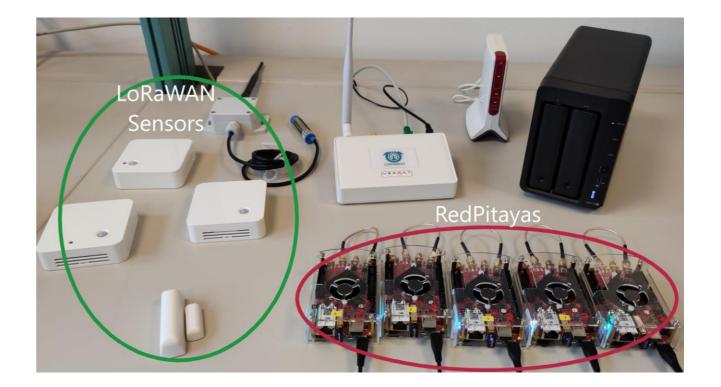
 We run software components on the NAS using Docker

) 👌 192.168.178.39:5000				☆	Q Suchen	\$ ⊘
٠						
	Docke	r.				
Overview	Details Edit Action - Settings -					Y Search
Container	chirpstack-docker_chirpstack-applicati chirpstack/chirpstack-application-server:3	СРИ	0.08%	RAM	32 MB	Running Up for 3 hours
Registry	chirpstack-docker_chirpstack-network chirpstack/chirpstack-network-server:3	СРИ	0.05%	RAM	22 MB	Running Up for 3 hours
Image	chirpstack-docker_mosquitto_1 edipse-mosquitto	СРИ	0.05%	RAM	49 MB	Running Up for 3 hours
Network	chirpstack-docker_postgresql_1 postgres:9.6-alpine	СРИ	0.2%	RAM	36 MB	Running Up for 3 hours
	chirpstack-docker_redis_1 redis:5-alpine	СРИ	0.03%	RAM	4 MB	Running Up for 3 hours
	cocky_shaw grafana/grafana	СРО		RAM		Stopped
	influxdb influxdb	CPU		RAM		Stopped
	temperature_monitor	CPU		RAM		Stopped
	thingsboard_mytb_1 thingsboard/tb-postgres	CPU	0.7%	RAM	695 MB	Running Up for 3 hours



Mittelstand- 🗩 Digital 🧧 🛡

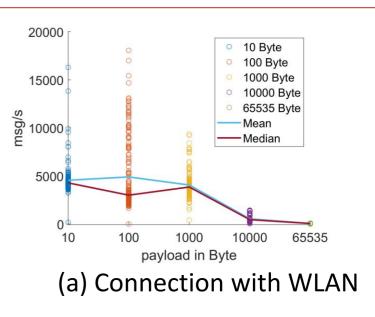
- We deployed the system for smaller projects in SMEs
 - 1. Elsys ERS CO2 LoRaWAN sensor to monitor CO2 in the room.
 - Employees monitored the air quality and ventilate the premises accordingly
 - 2. Elsys ELT-2 with inductive proximity sensor
 - Sensor counts metallic object that are transported on a conveyer belt during production

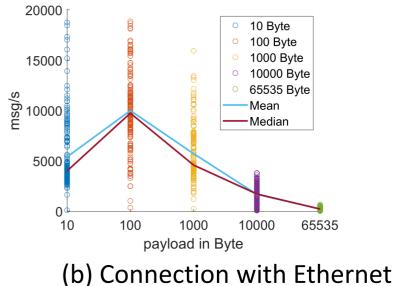


Mittelstand- 🗨 🕷

System Evaluation I

- With only a few LoRaWAN sensors the system is idle
- We determined the performance of our system empirically with two experiments
 - MQTTLoader to determine the maximum message rates
 - Maximum user data rate with RedPitayas

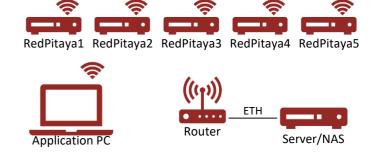


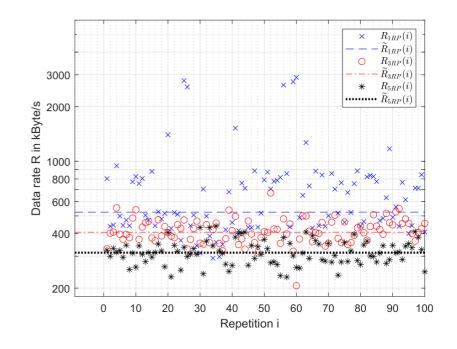


System Evaluation II

- Measure the maximum message rates with MQTTLoader [1]
 - MQTTLoader v.0.8.1 is running within a virtual machine running Ubuntu 20.04 on a Windows PC that is connected either via the local WLAN or via Ethernet
 - Configured with increasing payload
 - Timeout after 180 s
- For payloads up to 1000 Bytes, we conclude that we are able to send up to 5000 msg/s

[1] R. Banno, K. Ohsawa, Y. Kitagawa, T. Takada, and T. Yoshizawa, "Measuring Performance of MQTT v5. 0 Brokers with MQTTLoader," in 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2021, pp. 1–2.




Gefördert dur

System Evaluation III

- To measure the maximum achievable user data rate with 1, 3, and 5 RedPitayas [2]
 - Collect analog raw data and send via MQTT with a payload of 65535 Byte per channel
 - Data is stored in a MATLAB script on the application PC
 - The results of the measurements performed with 1, 3, and 5 RedPitaya devices, publishing ≈ 50 messages per second
 - Determine Data rate R from processed data D and run time t

[2] F. John, S. O. Schmidt, and H. Hellbrück, "Flexible Arbitrary Signal Generation and Acquisition System for Compact Underwater Measurement Systems and Data Fusion," in Global Oceans 2021: San Diego Porto, Sep 2021, pp. 1–6

Conclusion

- We propose a flexible, simple, and portable infrastructure for data acquisition designed for use in SMEs
- Tested empirically the performance of the MQTT broker
 - The broker and local network is able to handle additional 5000 MQTT messages per second
- The components such as the MQTT broker and ThingsBoard are a good start for SMEs and are a framework for further process optimization

Future Work

- Currently, we investigate an automated deployment process and getting started guide
- Investigate max. number of LoRaWAN sensors that the system is able to handle

Thank you for you attention! Feel free to ask questions.