

Monopulse-based THz Beam Tracking for Indoor Virtual Reality Applications

Krishan K. Tiwari, V. Sark, Eckhard Grass, Rolf Kraemer

15-16 May 2019

innovations for high performance microelectronics

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 761329 (WORTECS).

Organisation of the Presentation

1	VR use case and THz Communications
2	Need for Beam Tracking
3	Monopulse-based Beam Tracking
4	Tracking requirements for VR
5	Design and Matlab implementation
6	Conclusions

WORTECS Virtual Reality Use Case

www.ihp-microelectronics.com | © 2018 - All rights reserved | MKT, Osnäbruck

4

............

≻ THz spectrum 0.1 to 10 THz

- \succ Ultra-high data rate radio links \rightarrow Large bandwidth
 - \rightarrow THz spectrum : Not yet allocated!

Extremely small wavelength

 \rightarrow Electrically large antenna arrays in small form-factors

➤ Raised noise floor, limited EIRP, and propagation conditions

\rightarrow only a few radio paths

Sparse MIMO Channel

www.ihp-microelectronics.com | © 2018 - All rights reserved | MKT, Osnäbruck

> Sparsity reduces the problem of channel learning to RF beam training.

RF Beam Training SOTA

- ➢ Exhaustive RF beam training
- ➢ Multi-level RF beam training

- Significant overheads and losses
- \succ Use these overheads instead for payload data comms. \rightarrow Beam tracking

Monopulse-based Beam Tracking

- → Kalman-filter based tracking Needs feedback
- desirable to avoid feedback for resource savings
- Amplitude-comparison monopulse angular tracking
- ➢ Uses simultaneous lobing for AoA error generation →
 No feedback → For systems with > 2 RFCs, lower
 overhead even than sequential lobing & no extra hardware requirement.

www.ihp-microelectronics.com | © 2018 - All rights reserved | MKT, Osnäbruck

- ➤ User mobility : 4 kms/h
- User movement over plane surface
- Angular tracking needed only in 1D azimuthal axis
- AoA, AoD, and channel gain are inputs to beam tracking process from the results of RF beam training operation
- Discrete tracking

Design

 \succ 1D \rightarrow ULA implementation ULA Orthogonal Beamforming (N= 8) 7 > DFT beamforming codebook 6 ► <u>HPBW squint in u-space</u> 8eam Pattern 5 Matlab codes as general purpose as possible – using Functions 2 0.2 -0.2 0.4 0.8 -0.8 -0.6 -0.4 0 0.6 u

Mathematical basis for utility of u-space

.....

$$\frac{d}{d\theta} e^{-j\frac{2\pi}{\lambda}d\sin(\theta)} = -\frac{2\pi}{\lambda} d\cos(\theta) \sin\left(\frac{2\pi}{\lambda}d\cos(\theta)\right) -j\frac{2\pi}{\lambda}d\cos(\theta)\cos\left(\frac{2\pi}{\lambda}d\sin(\theta)\right)$$
(Eq. 1)

$$\frac{d}{du} e^{-j\frac{2\pi}{\lambda}du}$$
$$= -j \frac{2\pi}{\lambda} de^{-j\frac{2\pi}{\lambda}du}$$
(Eq. 2)

www.ihp-microelectronics.com | © 2018 - All rights reserved | MKT, Osnäbruck k

Pseudocode for Matlab implementation

- 1. Generate DFT codebooks for Tx & Rx.
- 2. Pass beam search o/p as i/p for beam tracking.
- 3. Generate MIMO channel matrix based on AoA, AoD, and gain.
- 4. Calculate error output of monopulse comparator.
- 5. Select next right / left beam.
- 6. Iterate steps 4 & 5.

- THz RF/IF beam tracking requirements for indoor VR/AR applications have been identified.
- Monopulse-based beam tracking implemented in Matlab, with discrete beam MRAs.
- \blacktriangleright No feedback \rightarrow a minimum overhead solution, overheads lower than sequential lobing.
- ➢ Beam tracking tested manually → error reduces to zero in a few iterations and track is maintained consistently.

Next step:

➤ Ideal phase-shift values in Matlab DFT codebooks, in practice digitally-controlled phase-shifters → only discrete phase-shift values feasible → an impact analysis and validation of quantized phase values is an interesting future work with practical relevance.

Thank you for your attention!

Krishan K. Tiwari

IHP – Innovations for High Performance Microelectronics
Im Technologiepark 25
15236 Frankfurt (Oder)
Germany
Phone: +49 (0) 335 5625 245
Fax: +49 (0) 335 5625 671
Email: tiwari@ihp-microelectronics.com

www.ihp-microelectronics.com

innovations for high performance microelectronics

