

LORAWAN IN A RURAL CONTEXT

USE CASES AND OPPORTUNITIES FOR AGRICULTURAL BUSINESSES

Labor für Technische Informatik

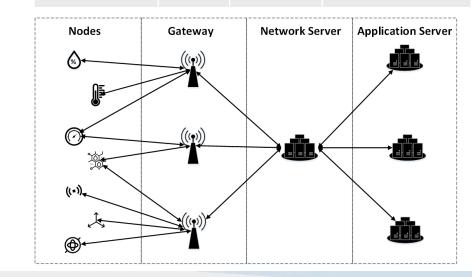
Alexander Grunwald Marco Schaarschmidt Clemens Westerkamp

INHALTSVERZEICHNIS

- Kurzvorstellung "Mittelstand 4.0-Kompetenzzentrum Lingen"
- LoRA & LoRaWAN
- Systemarchitektur zur Datenaufzeichnung und -Analyse
- Anwendungsfälle
 - Pferdestall
 - Feldboden
- Fazit & Ausblick

KURZVORSTELLUNG "MITTELSTAND 4.0-KOMPETENZZENTRUM LINGEN"

- Hochschule Osnabrück Wissenspartner für Teilbereich Agrar
- Umsetzungsprojekte
 - Potenzialanalysesystem
 - Demonstrationshof
 - Erprobung von Sensoren und Systemen
 - Mobiles Internet lückenhaft


LORA & LORAWAN

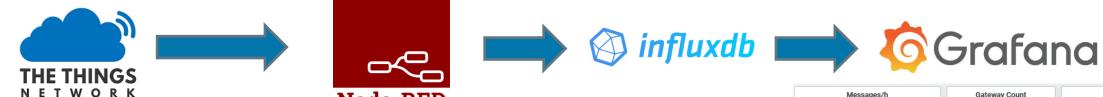
HOCHSCHULE OSNABRÜCK

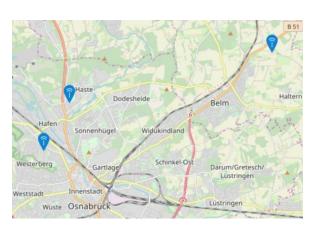
UNIVERSITY OF APPLIED SCIENCES

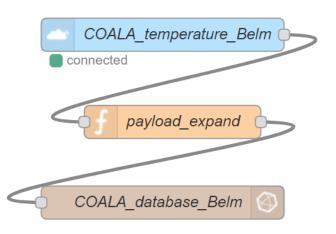
Modulation Bitrate [bit/s] SF BW 125 kHz LoRa FS12 250 LoRa **FS11** 125 kHz 440 LoRa FS10 125 kHz 980 LoRa 125 kHz 1760 FS9 125 kHz LoRa FS8 3125 LoRa FS7 125 kHz 5470 250 kHz LoRa FS7 11000 FSK 50000

LoRa

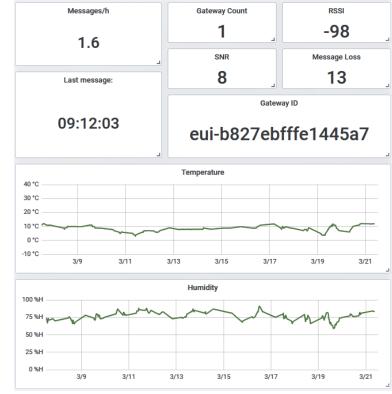
- Radio-Technologie auf Basis des 868 MHz Bandes
- Sendeleistung 25 mW
- LoRa Modulation (CSS basiert)
- Starke Nutzungseinschränkung
 - 1% Duty-Cycle
 - Limits der "Fair Access Policy" des TTN
 - Upload: 30 Sekunden/Tag
 - Downlink: auf 10 Nachrichten/Tag


LoRaWAN


- LPWAN-Spezifikation auf Basis von LoRa
- Verschlüsselt
- Drei Geräteklassen


SYSTEMARCHITEKTUR ZUR DATENAUFZEICHNUNG UND - ANALYSE

Node-RED



Bildquellen:

[THETHINGSNETWORK, 2019] [NODERED, 2019] [INFLUXDATA, 2019] [GRAFANA, 2019]

ANWENDUNGSFÄLLE: ÜBERBLICK

- Betrachtete Anwendungsfälle:
 - Pferdestall: Fokus auf möglichst niedrige Datennutzung zur Übertragung von Messwerten
 - Feldboden: Evaluieren der Durchdringbarkeit von Feldböden
- Nutzung der vorgestellten Systemarchitektur in beiden Anwendungsfällen
- Durchführung auf Versuchshof in Belm
- Testzeitraum: 07.03.2019 21.03.2019

ANWENDUNGSFÄLLE: PFERDESTALL

- Übertragung von Temperatur und Luftfeuchtigkeit
 - -51,2 °C bis 51,2 °C
 - 0-100 % Luftfeuchtigkeit
- Payload von 2 Byte
 - 9 bit Temperatur
 - 7 bit Luftfeuchtigkeit
- Hysterese von 0,2 °C
- ca. 70 Meter zwischen Gateway und Sensor
- Durchschnittlich 1,6 Nachrichten pro Stunden
- Durchschnittlich 47,22 ms Signallaufzeit
- SF7BW125
- "Fair Access Policy" um Faktor 16,55 unterschritten

ANWENDUNGSFÄLLE: FELDBODEN

- Übertragung von Bodentemperatur und Leitwert
- Leichte Verdichtung des Feldbodens nach Einbringung des Sensors
- Ackerland in 40 und 350 m Entfernung zum Gateway
- Tiefen von 0, 10, 20, 40 und 60 cm

Messergebnisse bei 40 m Entfernung

Tiefe	RSSI [dBm]	SNR	SF
0 cm	-81,2	9,1	SF7
10 cm	-87,5	8,8	SF7
20 cm	-83,6	8,6	SF7
40 cm	-97,1	8,7	SF7
60 cm	-98,5	8,9	SF7

Messergebnisse bei 350 m Entfernung

	0		0
Tiefe	RSSI [dBm]	SNR	SF
0 cm	- 117,0	-6,8	SF7
10 cm	- 119,5	-5,7	SF8
20 cm	- 116,3	-4,2	SF8
40 cm	- 119,3	-5,4	SF9
60 cm	- 119,6	-7,5	SF10

FAZIT & AUSBLICK

- LoRaWAN geeignet zur Klimaüberwachung von Stallungen
 - Erweiterung zur Schadgasmessung
- Durchdringbarkeit von Feldböden für kleine Schläge ausreichend
 - Beurteilung der Bodenqualität anhand der Messungen
 - Weitere Untersuchungen zur optimalen Positionierung im Feld
 - Optimierung der Energieeffizienz des Sensors
 - Langzeitmessung mit mehreren Sensoren
- Vergleich von LoRa mit NB-IoT

Vielen Dank für Ihre Aufmerksamkeit

