24. ITG Fachtagung Mobilkommunikation – Technologien und Anwendungen

A Controller for Network-Assisted CACC based Platooning

Sanket Partani, Andreas Weinand, Hans D. Schotten

Institute for Wireless Communications and Navigation,

Technical University of Kaiserslautern, Germany

Agenda

- 1. Introduction
- 2. Goals
- 3. Platooning
- 4. Controller
- 5. Simulation Setup
- 6. Results
- 7. Conclusion

Introduction

- High number of vehicles in the transport and private sectors
- ITS technologies Focus towards vehicle safety (ADAS) and efficiency (start-stop system)
- Usage of V2V and C-V2X technologies can further improve vehicle safety – increased communication range, can be tailored to specific applications (commercial/safety)
- C-ITS enables vehicle-safety and traffic management technologies
- Beneficiaries (major) of C-ITS services:
 - Reduced travel times (66%)
 - Reduced accident rates (22%)
 - Reduced fuel consumption (11%)

Goals

- Implementing a controller based on CACC principles
- Portray the impact of wireless communication for low latency, high reliability application such as platooning (at low inter-vehicular distances) DSRC, LTE-V2V sidelink
- Simulations/Scenarios highlighting the controller's capabilities:
 - Creating a platoon with suitable vehicles
 - Maintaining platoon stability (main focus) reducing vehicle instability (locally and globally)

Platooning

- Distance reduction effects:
 - Increased base pressure (leader)
 - Decreased drag (follower)
- Forming Strategies:
 - Scheduled/Static vehicles are pre-decided
 - Real-time vehicles are decided en-route
 - Opportunistic vehicles are decided based on vicinity to one another
- Control Strategies:
 - Variable spacing speed based control (ex. ACC) headway defined in time
 - Constant spacing distance based control (ex. CACC) headway defined in distance

Vehicle power consumption to overcome resistances

Platooning – CACC Control Strategies

- Centralized
 - Platoon leader micro-manages every platoon member speed, distance, acceleration, etc.
 - Controller is "installed" in the leader so only a predefined vehicle can be used as a leader

- Decentralized
 - Every vehicle is responsible to maintain IVD/speed
 - Can be attained by obtaining information of
 - Only the preceding vehicle
 - The preceding vehicle and the leader

Controller

- Requirements:
 - Ability to form platoons on the go
 - Maintain platoon stability
 - Adapt to vehicles in front of the platoon
 - Conform to road's/user's specified speed limits
- Assumptions:
 - Straight line driving is expected, i.e., no lateral movement/steering is expected
 - Platoon members do not leave the platoon
 - Controller doesn't allow for non-members to break the platoon
 - All vehicular components (brake pedals, throttle pedals, etc) work without a glitch

Controller – Architecture & Logic

- Controller is installed in the Platoon leader (centralized approach)
- Leader selection A truck is always chosen due to its higher frontal area
- Member selection based on:
 - Distance from the last platoon member lower the better
 - Speed of the vehicle +/- 25% of platoon speed
- Joining manoeuvre vehicles join in behind the current last member
- Information exchange between PMs and PL
 - Current position (PM -> PL)
 - Current velocity (PM -> PL)
 - Current distance to its preceding member (PM -> PL)
 - Actions brake, accelerate, maintain speed (PL -> PM)
- Platoon stability Saw tooth control
 - A tolerance range is given to the controller (desired IVD +/-10%) based on which the apt PM is accelerated or decelerated
 - Prevent vehicles from being in a state of constant disarray (undershooting and overshooting)

Simulation Set-up

- SUMO microscopic traffic simulator
- 4 km of highway (single lane)
- Road speed limit = 130 kmph
- Vehicles used trucks
- Reaction time of vehicles = 0.3 s (internal processing time for vehicles)
- Networks simulated DSRC, LTE-V2V sidelink (Abstract implementation PDR values)
- Message rates 12.5 ms, 25 ms and 100 ms
- Tested IVDs 1 m, **5 m** and 10 m
- Reaction time $(\tau) = 0$ s
- Min gap (g) = 0 m
- Platoon speed = 80 kmph

Results – Simulation Phases

- Complete simulation at a message rate of 12.5 ms or 80 Hz
- Simulation phases:
 - 2000 ~6500: Formation
 - 8000 10000: Emergency braking
 - 10000 ~11000: Acceleration

Note – A simulation time step is equal to the message rate, i.e., here a time step is equal to 12.5 ms

Results – DSRC vs LTE-V2V sidelink

DSRC @ 40 Hz

LTE-V2V sidelink @ 40 Hz

Results

- The values for PM 1-4 are percentages (of the total time taken for the platoon to achieve stability), i.e., the amount of time each vehicle is responsible for the instability in the platoon
- The instability can be amounted to:
 - Reaction time of vehicles (300 ms) bottleneck!
 - Messages not being received
 - Consecutive packets being dropped

MR = 12.5ms,	ITE	DSRC
IVD = 5m	LIC	
PM1 (%)	<mark>67.4</mark> 6	34.19
PM2 (%)	75.88	68.54
PM3 (%)	91.58	86.71
PM4 (%)	94.01	87.65
Total Time (s)	30.8875	39.8875

MR = 25ms, IVD = 5m	LTE	DSRC
PM1 (%)	41,48	34,63
PM2 (%)	79,69	46,19
PM3 (%)	92,75	75,08
PM4 (%)	94,23	84,42
Total Time (s)	32,125	40,425

Message Rate	DSRC	LTE-V2V sidelink
80 Hz	~39 seconds	~31 seconds
40 Hz	~40 seconds	~32 seconds
10 Hz	~27 seconds	~25 seconds

MR = 100ms,	1.75	DCDC
IVD = 5m	LIE	DSRC
PM1 (%)	82,4	52,08
PM2 (%)	78,4	80
PM3 (%)	70,8	80,38
PM4 (%)	87,2	<mark>81,8</mark> 9
Total Time (s)	25	26,5

3 messages

24 messages

12 messages

Conclusion & Future Work

Conclusion:

- Platoon stability is achieved over multiple simulations, excluding the ones in which vehicle collision was detected
- Higher the IVD, higher is the stability of the platoon
- Higher message rate leads to more redundant messages and network usage
- The vehicle reaction time should govern the frequency at which messages are received
- LTE-V2V sidelink achieves platoon stability at a faster rate than DSRC owing to its higher PDR values

Future Work:

- PID control implementation in place of saw-tooth control to provide for smoother transitions for vehicles
- Implement a detailed model of a wireless communication protocol rather than a high level abstraction (PDR)
- Introduce other parameters latency, network congestion, resource allocation, etc.

Sanket Partani, M.Sc. Institute for Wireless Communication & Navigation Technical University of Kaiserslautern

Ph: +49 6312053680 Email: <u>partani@eit.uni-kl.de</u>

Thank You

