Distributed Ledger Technology for Trust Management Optimisation in M2M

24. ITG-Fachtagung Mobilkommunikation

Besfort Shala

shala@e-technik.org

Frankfurt University of Applied Sciences, Germany

Research Group for Telecommunication Networks

Kleiststraße 3, D-60318 Frankfurt a.M. E-Mail: shala@e-technik.org

Outline

- 1. Decentralised M2M Application Service
- 2. Trust Management and Evaluation Approaches
- 3. Distributed Ledger Technology
- 4. M2M Trust Evaluation System
- 5. Conclusion

Intelligent devices in end-user environment (devices provide monitoring, controlling and communication functionality)

Various M2M application fields:

- Energy management
- Building surveillance
- Smart home

Limitations of existing M2M service platforms:

- Expert knowledge required (not applicable by end-users)
- Central stakeholders or infrastructure elements (dependencies, costs,...)

All rights reserved

- Application is a combination of one or more underlying services

Frankfurt University of Applied Sciences Research Group for Telecommunication Networks Besfort Shala - M.Sc.

Service Creation Environment (local):

- End-users develop individual M2M applications
- M2M applications integrate M2M resources and multimedia communication

Networks

- Executes M2M applications

P2P communication between service provider and service consumer (no intermediary entities)

M2M system architecture contains no central entities(e.g. central platform elements, stakeholders)

M2M community:

- Social M2M network (for M2M services)
- Uniform platform to connect participants
- Sub-communities form interest groups

Limitations:

- End-user with less technical knowledge
 - \rightarrow wrong or malfunctioning services
- Untrustworthy peers

→ malfunctioning or malicious services

• Joining/leaving peers or services

 \rightarrow breaking down the network or application

Random selection of services

→ unsecure or untrusted service providers

2 Trust Management and Evaluation Approaches

Prevent security problems:

• Trust relationships between the peers

How to establish trust relationships?

- 1. Define how the trust score of a peer is computed
- 2. Define which parameters are considered for the trust evaluation
- 3. Define who is going to do the trust evaluation
- 4. Define how the computed trust scores are managed.

Trust Management and Evaluation Approaches

• Several existing trust approaches in M2M and in other related fields (P2P systems)

		Requirements					
Trust Management Approaches	Decentralised Evaluation	Initial Trust Score	Ongoing Trust Score	Tamper-proof Storage	Comprehensive Trust Model		
DisTMIoT		-	+	0	-		
RecomTrust	о	0	+	-	-		
ТаНСІоТ	0	-	+	-	-		
TMSD	-	-	+	-	-		
PSIoTrust	-	0	-	-	-		
TruClust	0	-	+	-	0		
TBootSP	+	0	-	-	-		
ReputaBoot	+	0	-	-	0		
TrustSSC	-	-	+	-	0		

Legend: + satisfied; - not satisfied; o partially satisfied

n Q_
Chi

Frankfurt University of Applied Sciences Research Group for Telecommunication Networks 2

Trust Management and Evaluation Approaches

		Requirements					
Trust Management Approaches	Decentralised Evaluation	Initial Trust Score	Ongoing Trust Score	Tamper-proof Storage	Comprehensive Trust Model		
DisTMIoT	+	-	+	0	-		
RecomTrust	о	0	+	-	-		
ТаНСІоТ	0	-	+	-	-		
TMSD	-	-	+	-	-		
PSIoTrust	-	о	-	-	-		
TruClust	о	-	+	-	0		
TBootSP	+	0	-	-	-		
ReputaBoot	+	ο	-	-	0		
TrustSSC	-	-	+	-	0		

Legend: + satisfied; - not satisfied; o partially satisfied

n Q_
╶╧╻┎╴┕
Մվ

Basics:

- An asset database that can be shared across a network of multiple sites, geographies or institutions
- All participants can have their own identical copy of the ledger.
- Any changes to ledger are reflected in all copies
- Security and accuray of assets stored in the ledger are maintained cryptographically
- Two architectures used in distributed ledger approaches:
 - o Blockchain
 - **o** Directed Acyclic Graph

Advantages of using Blockchain:

- decentralization,
- transparency
- immutability

Example for using blockchain to store transactions – Bitcoin

Five key components of a blockchain

- 1. Cryptography
- 2. P2P network
- 3. Consensus mechanism
- 4. Ledger
- 5. Validity rules

Frankfurt University of Applied Sciences Research Group for Telecommunication Networks Bob

Transaction forwarding and collection

Networks

Frankfurt University of Applied Sciences Research Group for Telecommunication 4

Block creation and mining

Block validation and integration

Frankfurt University of Applied Sciences Research Group for Telecommunication Networks 6

- Five key components of a blockchain
 - 1. Cryptography
 - 2. P2P network
 - 3. Consensus mechanism
 - 4. Ledger
 - 5. Validity rules
- Consensus between the nodes to agree for the same copy of the ledger
- Consensus mechanism is a set of steps taken by the participating nodes to agree on a proposed state.

Review of existing consensus mechanisms

Consensus mechanism	Computational Effort	Trusted Block Creator Selection	Trusted Block Creation	Trusted Transaction	Decentralized Architecture	Trust Reward/Punishment	Resilient Against Fake Transaction Attacks	Reliable Validation Decision Process
PoW	-	о	-	-	+	о	о	-
PoS	0	0	-	-	0	-	-	-
DPoS	0	0	-	-	0	-	-	-
Nano	0	0	-	-	0	-	-	-
Ripple	+	n/a	0	-	0	-	0	0
Tangle	0	-	0	0	0	-	0	-

Legend: + satisfied; - not satisfied; o partially satisfied

Q	<u>ل</u>

• Proposed "Proof of Trust" consensus mechanism

Frankfurt University of Applied Sciences Research Group for Telecommunication Networks Besfort Shala – M.Sc.

Identified problems in existing trust evaluation systems:

- 1. Decentralised Architecture
- 2. Data Storage
- 3. Initial Trust Score
- 4. Comprehensive Trust Model
- → Other peers act as Test Agents
- → Share their evaluation results in the P2P network

- Identified problems in existing trust evaluation systems:
 - 1. Decentralised Architecture

Frankfurt University of Applied Sciences Research Group for Telecommunication Besfort Shala - M.Sc.

Identified problems in existing trust evaluation systems:

Frankfurt University of Applied Sciences Research Group for Telecommunication Networks Besfort Shala - M.Sc.

- Identified problems in existing trust evaluation systems:
 - 1. Decentralised Architecture
 - 2. Data Storage
 - 3. Initial Trust Score

Frankfurt University of Applied Sciences Research Group for Telecommunication Networks Besfort Shala - M.Sc.

4

5 Conclusion

- Limitations of existing trust approaches
- Limitations of existing consensus mechanisms
- New consensus mechanism
- Integration of blockchain for framework optimisation
- Comprehensive trust evaluation system

Distributed Ledger Technology for Trust Management Optimisation in M2M

24. ITG-Fachtagung Mobilkommunikation

Besfort Shala

shala@e-technik.org

Frankfurt University of Applied Sciences, Germany

Research Group for Telecommunication Networks

Kleiststraße 3, D-60318 Frankfurt a.M. E-Mail: shala@e-technik.org