

Deutsches Forschungszentrum für Künstliche Intelligenz German Research Center for Artificial Intelligence

Physical Layer Security for IIoT and CPPS: A Cellular Network Security Approach

Christoph Lipps, Mathias Strufe,

Sachinkumar Bavikatti Mallikarjun

and Hans Dieter Schotten

24. ITG Fachtagung Mobilkommunikation,

Osnabrück

IIoT and CPPS

Motivation	PhySec	Testbed	d Conclusion	\supset

IIoT and CPPS

- What do we have?
 - inter-connected devices
 - wireless connections
 - sensitive date

- What are the requirements?
 - authentication of the participating entities
 - encryption of data & content

Sound and secure communication!

Motivation PhySec	Testbed	Conclusion	>
-------------------	---------	------------	---

Physical Layer Security (PhySec)

Physical Layer Security comprises a series of technical processes in which the generation of cryptographic credentials is based on different physical properties.

Testbed

Conclusion

PhySec

Motivation

Secret Key Generation

- Secret Key Generation \rightarrow Channel-PUF
 - channel properties (reflection, diffraction, scattering)
 - extract shared secret
 - enhancement of existing cryptographic methods

Cellular PhySec

• Current field of research

- PhySec in Multi-Antenna cellular networks [1]
- system model, including different application scenarios [2]
- safeguarding the upcoming 5G wireless communication networks [3]

Channel Reciprocity

LTE PhySec Testbed

First Results

Conclusion

- We described vulnerabilities associated with the current changes in the industrial landscape
- PhySec offers a worthwhile solution to meet the requirements
- We propose a testbed to provide real-world measurements of NGMN-PhySec algorithms
- the first results of the evaluation are promising

Motivation	PhySec	\geq	Testbed	\rightarrow	Conclusion	\supset
------------	--------	--------	---------	---------------	------------	-----------

References

[1] G. Geraci, H. Dhillon, J. Andrews, J. Yuan, and I. Collings, "Physical Layer Security in Downlink Multi-Antenna Cellular Networks", *EEE Transactions on Communications*, vol. 62, no. 6, pp. 2006–2021, 2014. DOI:10.1109/TCOMM.2014.2314664.

[2] H. Wang, X. Zhou, and M. Reed, "Physical Layer Security in Cellular Networks: A Stochastic Geometry Approach", *IEEE Transactions on Wireless Communications*, vol. 12, no. 6, pp. 2776–2787, 2013. DOI: 10.1109/TWC.2013.041713.120865.
[3] N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, and M. Di Renzo, "Safeguarding 5G wireless communication networks using physical layer security", *IEEE Communications Magazine*, vol. 53, no. 4, pp. 20–27, 2015. DOI: 10.1109/MCOM.2015.7081071.

Motivation	PhySec	> Testbed	Conclusion
------------	--------	-----------	------------

Thank you!

Christoph.Lipps@dfki.de