To Supervise or not - ML for UWB Close Range Obstacle Detection

Raja Sattiraju, Jacob Kochems and Hans D. Schotten

Chair for Wireless Communications and Navigation

Contents

- 1. Introduction & Motivation
- 2. Construction of Hypothesis
- 3. Data Collection and Preparation
- 4. Training
- 5. Results & Conclusion

Introduction & Motivation

- Joint Communication & Obstacle Detection (JCOD) has applications in
 - Automatic Train Pairing (ATP)
 - Automatic Guided Vehicles (AGVs)
- UWB-like waveforms at 60GHz band offer the needed granularity for realizing JCOD

Monostatic Radar / UWB Pulses

Scans collected using TimeDomain P440

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Construction of Hypothesis

Binary Hypothesis is not sufficient for the considered applications.

Hence Binary hypothesis is extended to multi-class labeling problem.

3 2 **(**(p)) If there is no person $H = \begin{cases} 1, & \text{High Risk person} \\ 2, & \text{Medium Risk person} \\ 3, & \text{Low Risk person} \end{cases}$ Low Risk person

Input Data Collection and Preparation

- 2 Scenarios
 - Indoor
 - Outdoor

The Collected scans are of the size (N_s, N_f) where N_s is the number of samples and N_f is the number of features.

- Data Preprocessing
 - Zero centering of data and normalizing it with standard deviation (Feature Wise)

$$X_n = \sum_{i=1}^{N} \left(\frac{X_i - \frac{1}{N} \sum_{i=1}^{N} X_i}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2}} \right)$$

Training Methodology

Estimators Used

Mixture Models – Gaussian Mixture Model (GMM) and Bayesian Gaussian Mixture Model (BGMM)

Clustering Models – KMeans, Mini-batch KMeans, Agglomerative Clustering and Birch Model

Manifold Learning – Locally Linear Embedding (LLE), Isometric Mapping, Multi-Dimensional Scaling (MDS), Spectral Embedding (SE) and t-Distributed Stochastic neighbour Embedding (tSNE)

	Name	Underlying Model	Parameters	Values
	Gaussian Mixture Model	Mixture Models	Regularization covariance	[1e-6, 1e-5]
			tolerance	[1e-4, 1e-5]
	Bayesian Gaussian Mixture Model		Number initializations	[1,2]
			Maximum iterations	[100,200]
			Covariance type	[diagonal, spherical, tied, full]
	KMeans	Clustering	initialization	[random, k-means++]
			Number initializations	[10,15,20]
			tolerance	[1e-4, 5e-4, 1e-3, 5e-3]
	Mini-batch	Clustering	initialization	[random, k-means++]
	KMeans		Batch Size	[100,200,300,400,500]
			Reassignment ratio	[0.01, 0.05, 0.1, 0.5]
	Agglomerative Clustering	Clustering	Affinity	[euclidean, l1, l2, manhattan, cosine]
			linkage	[ward, complete, average]
	Birch	Clustering	Threshold	[0.2, 0.5, 0.7, 0.9]
			Branching Factor	[25,50,100,200]
			Compute Labels	[True, False]
	Locally Linear Embedding	Manifold Learning	Number of neighbors	[1,2,3,4,5,6,7,8,9,10]
			Method	[standard, ltsa, hessian, modified]
			Neighbors algorithm	[auto, brute, kd_tree, ball_tree]
	Isometric Mapping	Manifold Learning	Number of neighbors	[1,2,3,4,5,6,7,8,9,10]
			Eigen solver	[auto, arpack, dense]
			Path method	[auto, FW, D]
			Neighbors algorithm	[auto, brute, kd_tree, ball_tree]
	Multi Dimensional Scaling	Manifold Learning	Metric	[True, False]
			EPS	[0.001, 0.005, 0.01, 0.05]
	Spectral Embedding	Manifold Learning	Affinity	['nearest_neighbors', 'rbf'
	t-Distributed Stochastic Neighbor Embedding	Manifold Learning	Learning rate	[10.0, 50.0, 100.0, 250.0, 500.0]
			Initialization	[Random, PCA]
			Method	[barnes_hut, exact]

Results

Comparison with Supervised Learning Algorithms

Name	Underlying Model	Parameters	Values
Logistic Regression	Linear	Regularization parameter (C)	[0.001, 0.01, 0.1, 1, 10, 100, 1000]
		Solver	[lbfgs, sag, newton-cg]
Perceptron	Linear	Regularization parameter (Alpha)	[0.0001, 0.001, 0.01, 0.1, 1]
K-Nearest neighbors	Nearest neighbors	Number of neighbors to consider (N)	[1, 2 ,, 30]
Linear SVC	Support Vector Machine	Regularization parameter (C)	[0.001, 0.01, 0.1, 1, 10, 100, 1000]
Decision Tree	Tree Based	Splitting Quality Measure	[gini, entropy]
		Max_features to consider for splitting	[auto, sqrt, log2]
Random Forest	Tree based ensemble	Number of estimators, n	[16, 32, 64, 128, 25 6]
Extra Trees Classifier		Splitting Quality Measure	[gini, entropy]
		Max_features to consider for splitting	[auto, sqrt, log2]
Gradient Boosting	Tree based boosting	Number of estimators, n	[16, 32, 64, 128, 256]
Classifier		Learning Rate	[0.2, 0.5, 0.8, 1.0]

Grid Scores – Supervised Learning

ERSITÄT TERN

Conclusions

- Supervised Learning Methods outperform the unsupervised methods
- However, they needed predetermined number of labels and labeled data
- A hybrid model using a combination of both supervised and unsupervised models
 - First check the data distinguishability by means of unsupervised learning models (Mixture / Clustering models)
 - Second, fit the data using any of the supervised learning models and obtain the best model
 - Third, use manifold learning to reduce the dimensions. The number of output dimensions can be chosen so as not to affect the models score
 - Re-fit the best supervised learning model with the reduced data to obtain the final model

Raja Sattiraju, M.Sc. Chair for Wireless Communication & Navigation Technical University of Kaiserslautern

Ph: +49 6312053680 Email: <u>sattiraju@eit.uni-kl.de</u>

Thank You

