Matthias Schulist, Akos Kezdy, Dusan Milenkovic Qualcomm CDMA Technologies GmbH, Nuremberg, Germany Nitin Agarwal, Long Duan - Qualcomm Technologies Inc., San Diego, USA

Qualcom

Qualcomm Technologies, Inc.

4x4 MIMO – The Performance Boost for LTE

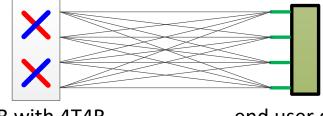
80-xxxx-x Rev. A

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

LTE Downlink 4x4 MIMO

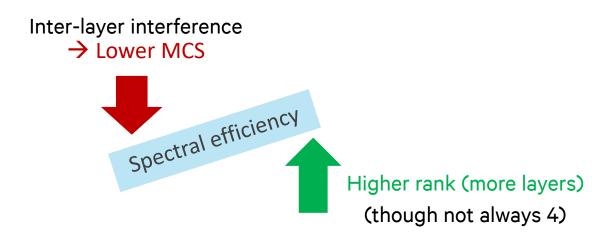

3GPP and System Deployment

• DL 4x4 MIMO has been standardized in LTE Rel.8

- Devices
 - In earlier 3GPP releases it required UE Cat. 5 not seeded
 - Later 3GPP releases decoupled UE DL and UL requirements newer devices support 4x4
- Networks
 - Most LTE deployments today are still 2x2 MIMO based
 - Need for higher spectral efficiency and capacity in networks
 - Many 4x4 MIMO upgrades observed now

Massive MIMO

- 3GPP standardized FD-MIMO starting with Rel.13
- Vendor proprietary solutions
- Multi-user aspect


eNB with 4T4R 2 cross-polarized antenna pairs end user device (UE) 4 receive antennas

4x4 MIMO is the first step to increased device and network performance on the massive MIMO road

Performance Expectations: Theory and Practice

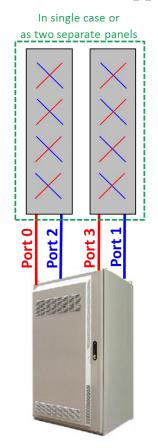
Setting Realistic Expectations

- Upgrading 2x2 MIMO to 4x4 MIMO potentially can double the DL throughput and system capacity
- In practice, it has to be consider:
 - Rank 4 is not achievable everywhere and anytime
 - Stationary vs. mobility conditions
 - eNB antenna system and channel characteristics
 - Spatial layers cause mutual interference to each other
 → SINR degradation, lower MCS and hence degraded capacity <u>per layer</u> compared to 2x2

Performance Expectations

Gains Compared to 2x2 MIMO Systems

ψ eNB Tx x UE Rx


2 x 4 Enhanced devices in legacy network	 UE Rx diversity gain Better DL SINR in all RF conditions Significant DL throughput gain on enhanced UE with 4 Rx antennas No additional CAPEX from network side
4 x 2 Legacy devices in enhanced network	 eNB Tx diversity gain Better DL SINR in all RF conditions DL throughput gain on legacy UE UL throughput and/or power saving gains due to eNB Rx diversity
4 x 4 Enhanced devices and network	 Highest gains Increased spatial diversity and multiplexing gain Better SINR from 4 Rx antennas Significant DL throughput gain on new UE allowing up to 4 layer DL transmission UL throughput and/or power saving gains

Performance Drivers

Factors Impacting 4x4 MIMO Performance

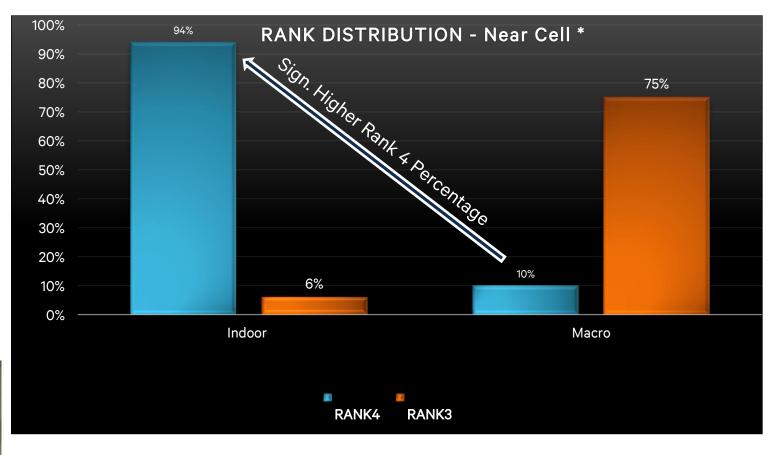
Antenna Placement on eNB	 Antenna spacing, front to back ratio Antenna port mapping Neighbor sector leakage Cross-polarization / omni directional antenna / lambda spacing 	
SINR	 4 layer gains require high signal-to-noise ratio CRS cancellation algorithms / interference rejection improves SINR 	
Power & System Parameters	 Available eNB PA power (e.g. 4x10W / 4x20W / 4x25W) DL power allocation parameters (p-a / p-b / RS power) System bandwidth Transmission mode: tm3 / tm4 	
UE Receiver	 UE antenna placement & design SINR distribution on individual receiver chains 	

Antenna Port Mapping

Examples: Outdoor – Macro network, Mobility

Spatial Rank in Outdoor vs. Indoor Setup

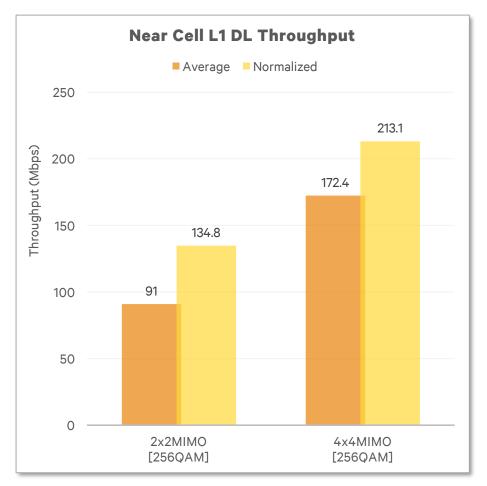
- Legacy 2x2 MIMO configuration with legacy UE provided average spatial rank of ~1.5 (baseline)
 - Using enhanced UE (with 4 antennas and 4 Rx chains) in legacy network improved rank to ~1.9 (i.e., close to theoretical maximum)
- Upgrading to 4x4 MIMO configuration increased average spatial rank to ~2.5
 - Legacy UE on 4x4 MIMO network also showed improved rank of up to ~1.7


Configuration		Average Rank	
eNB	UE	Cluster 1	Cluster 2
2T2R	1T2R	1.53 (baseline)	1.45 (baseline)
	1T4R	1.92	1.88
4T4R	1T2R	1.72	-
	1T4R	2.48	2.62

Examples: Indoor - Picocell, Pedestrian

Spatial Rank in Outdoor vs. Indoor Setup

- In typical macro outdoor scenarios Rank 4 is rarely observed
- Spatial antenna separation is feasible in indoor setups leading to high percentage of Rank 4



4x4 MIMO Gains

Stationary, Outdoor, Near Cell:

Throughput 4x4 MIMO vs. 2x2 MIMO

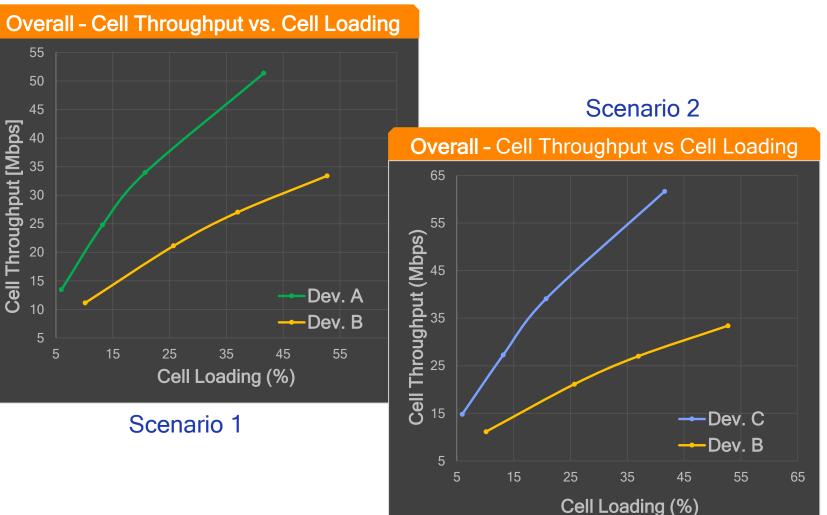
Mobility, Outdoor, Near to Far Cell:

Spectral Efficiency 4x4 MIMO vs. 2x2 MIMO

eNodeB → UE ↓	2T2R		4T4R	
	Cluster 1	Cluster 2	Cluster 1	Cluster 2
1T2R	1.0 (baseline)		1.1	1.1
1T4R	1.4	1.5	1.5	1.8

 Measured spectral efficiency shows clear benefit of higher order MIMO

- Improvement factor: 1.5 to 1.8 when both the eNodeB and the UE is upgraded (vs. theoretical maximum: 2.0)
- Improvement factor: 1.4 to 1.5 when only the UE is upgraded

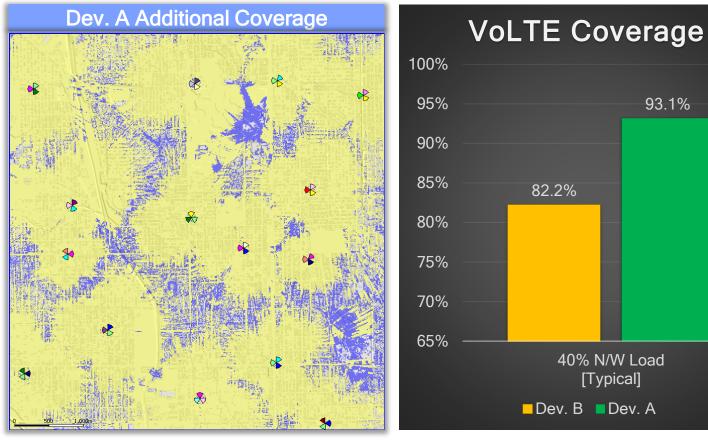

Commercial Device 4x4 MIMO Feature Impact on Network (simulations)

Capacity & Coverage Comparison

- Overall cell/network capacity gains of 80% at a typical 40% network load
- User experience speed improvement

Differentiating features for 4x4 MIMO support are 10/12 vs.. 6-layers

- Device A, 10L
- Device B, 6L
- Device C, 12L


Device B de-featuring results in a significant loss of network efficiency and user data speeds

Commercial Device 4x4 MIMO Feature Impact on Network (simulations)

Capacity & Coverage Comparison

- Considerable coverage gains for Dev. A
- VoLTE coverage is 11%-points higher for Dev. A

Differentiating features are 4x4 MIMO (or 4Rx dependent on band), 10-layer vs. 6-layer and LAA

Indicates areas with additional Dev. A VoLTE coverage

Device B de-featuring results in a significant loss of network voice coverage

82.2%

40% N/W Load [Typical]

Dev. B Dev. A

93.1%

System Performance and Device Capability Impact

Network and User KPI Improvements

Capacity

- Maximize use of valuable spectrum
- Lower OpEx/CapEx
- Reduced Congestion
- Leverage to Unlimited Data

Coverage

- Fewer dropped calls
- Deeper indoor penetration
- Lower site counts
 OpEx/CapEx
- Lower handover signaling
- Battery savings

User Experience

- Improved video streaming experience
- Reduced buffering and latency
- Faster music and App downloads
- Battery savings

Thank You !