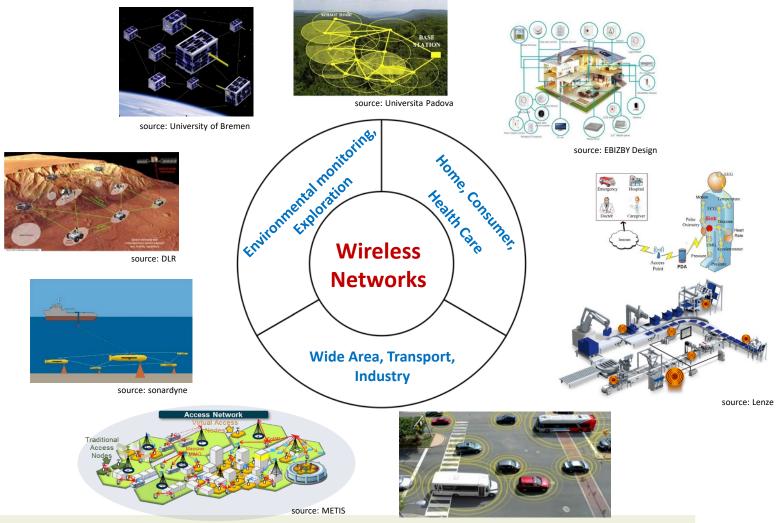


23. VDE/ITG Fachtagung Mobilkommunikation Hochschule Osnabrück

NEW DIRECTIONS IN WIRELESS COMMUNICATION RESEARCH AND WHAT THEY WILL ENABLE

Prof. Dr. Armin Dekorsy

Department of Communications Engineering
University of Bremen



Future Wireless Networks

 Ubiquitous communication among people and devices to serve huge amount of very divers future applications

Future Wireless Networks

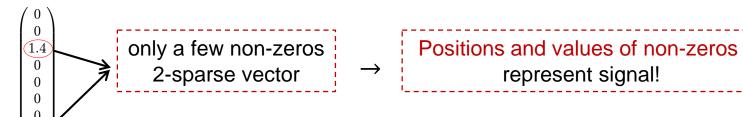
- Key challenges:
 - Massive amount of connections
 - Massive amount of data
 - Huge variety of data rates and latencies
 - Huge variety of reliable requirements
 - **•** ...
- Key enabling/driving technologies
 - Wireless communication technologies (e.g. massive MIMO, mmWave, cooperative communications, relaying)
 - Signal and data processing approaches (e.g. compressive sensing, in-network processing, relevant information processing, graph-based processing, machine learning)
 - Information theoretical approaches (e.g. Information Bottleneck Framework)

COMPRESSIVE SENSING

- Signal Structure Processing-

C. Bockelmann, F. Monsees, H. Schepker. E. Beck, T. Schnier, A. Dekorsy
Department of Communications Engineering
University of Bremen

The Compressive Sensing Problem in a Nutshell



Donoho/Candes 2006: Signal $\mathbf{z} \in \mathbb{R}^{1 \times N}$ is compressible in some basis $\mathbf{\Phi} \in \mathbb{R}^{N \times N}$

$$\mathbf{z} = \mathbf{\Phi} \mathbf{x}$$
 with $\mathbf{x} \in \mathbb{R}^{1 \times N}$

Compressible:

 \mathbf{x} is k-sparse

represent signal!

Observe z by measurement matrix $\Psi \in \mathbb{R}^{M \times N}$ with M < N noisy observations

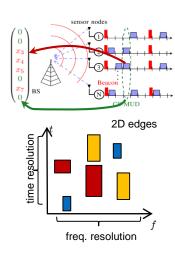
$$y = \Psi z + n$$
$$= \Psi \Phi x + n = Ax + n$$

(underdetermined linear system)

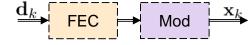
with noise $\mathbf{n} \in \mathbb{R}^M$ and $\mathbf{A} = \mathbf{\Phi} \mathbf{\Psi} \in \mathbb{R}^{M \times N}$

Task: Recover $\mathbf{x} \in \mathbb{R}^N$ using M < N measurements in vector \mathbf{y} by exploiting the signal structure that x is sparse $\rightarrow l1/l2$ -optimization problems

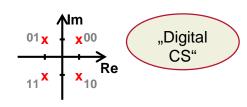
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{argmin}} \|\mathbf{x}\|_1 \text{ s.t. } \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 < \epsilon$$



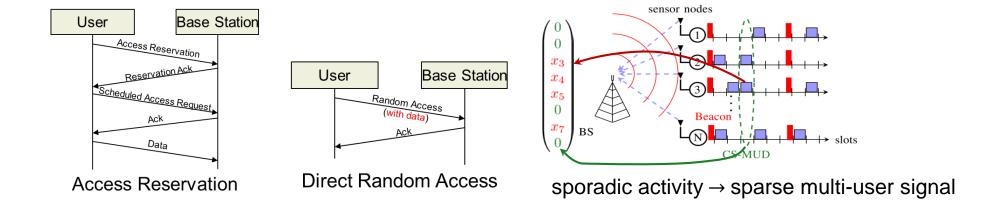
CS in Communications



Applications

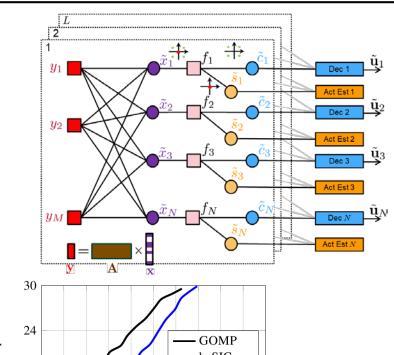

- Channel Estimation
 - Most impulse responses of wireless channels are sparse in sample clock
- Sporadic Communication
 - Machine type traffic leads to sparse detection problems
- Spectrum Sensing
 - Cognitive radio idea: Spectrum or edges of spectrum are sparse

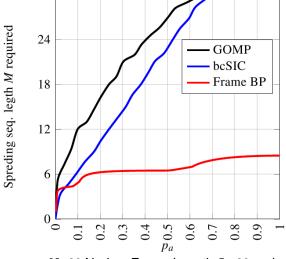
- Key differences to standard CS problems
 - Forward Error Correction: non-zero elements in x are part of a codeword
 - Additional structure that can be exploited, e.g. by iterative decoding


- Modulation: non-zero elements in x are not continuous
 - Discrete symbol alphabets → requires adapted CS-algorithms
 → Digital CS

Compressive Sensing Multi-User Detection (CS-MUD)

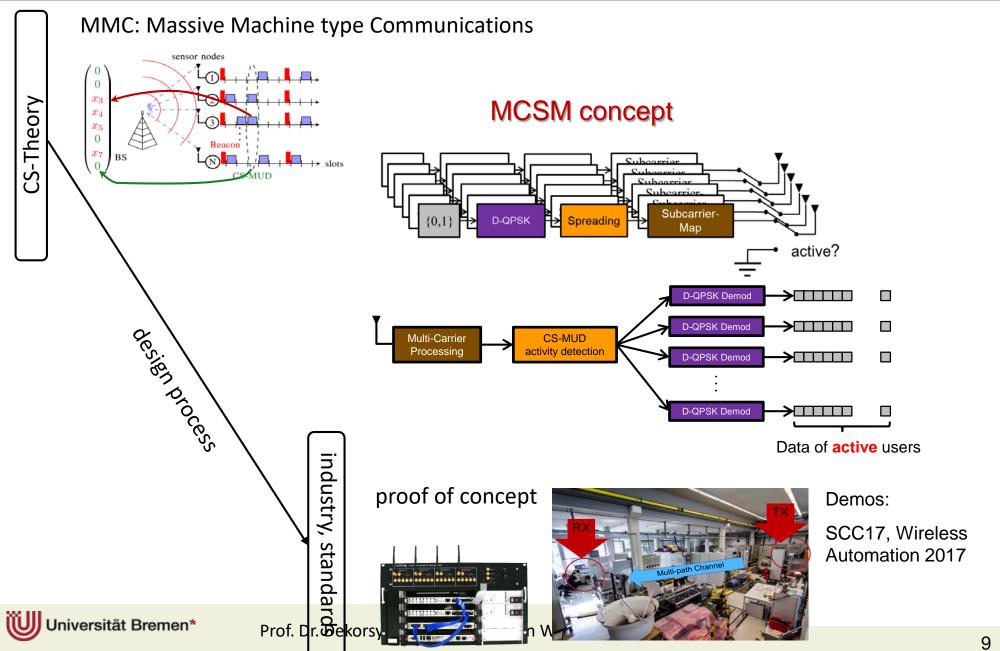
- IoT/5G challenge: Massive Machine type Communication (MMC)
 - MMC is usually of low power, low rate and intermittent activity
 - New PHY/MAC are needed to handle massive access with very low control signaling overhead



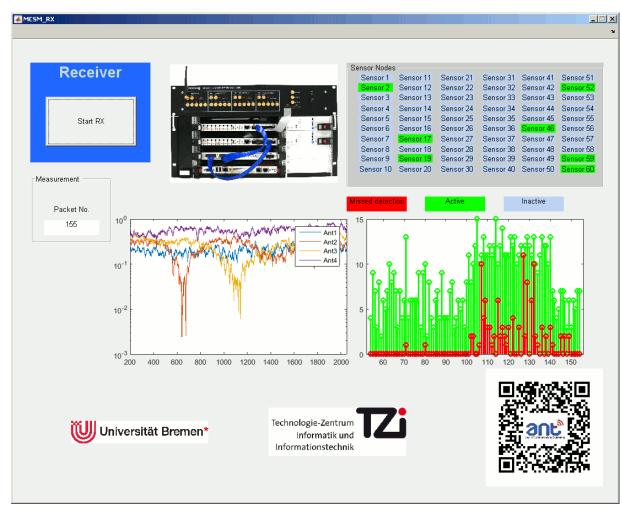

 Task: Design sparsity exploiting multi-user receivers (linear and non-linear) for activity, data and channel estimation

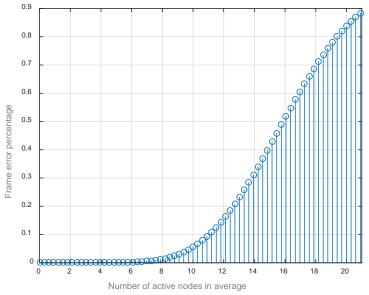
CS-MUD: Graph-based detection

- Research task: Message Passing for CS-MUD
 - Graph-based CS-MUD detector
 - Exchange of soft information (PDFs)
 - Spreading based transmission
- Key challenge:
 - Joint soft activity and data detection
- Key results:
 - Plot: spreading sequence length M required for a FER<10 $^{-3}$
 - $M < N \rightarrow \text{overloaded system}$
 - Frame Belief Propagation (Frame BP): slight increase in M for high p_a
 - Frame BP outperforms state-of-the art algorithms such as GOMP and bcSIC



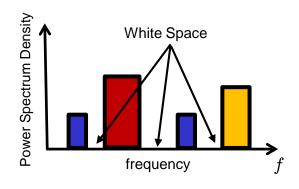
N=30 Nodes, Frame Length L=30 code-symbols Repetition code R=5

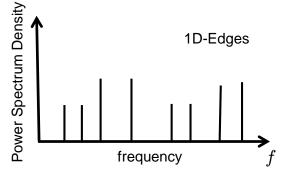

Multi-Carrier Compressive Sensing Multi-User Detection (MCSM)

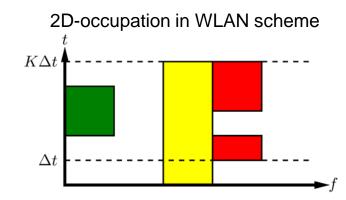

MCSM Testbed

MCSM Receiver GUI

- Live recording of sporadic transmission of 60 nodes
- Packet 1-100 with $p_a = 0.1$
- Packet 101-140 with $p_a = 0.25$
- FER performance: Graceful degradation with higher activity






Compressive Edge Spectrum Sensing (CESS)

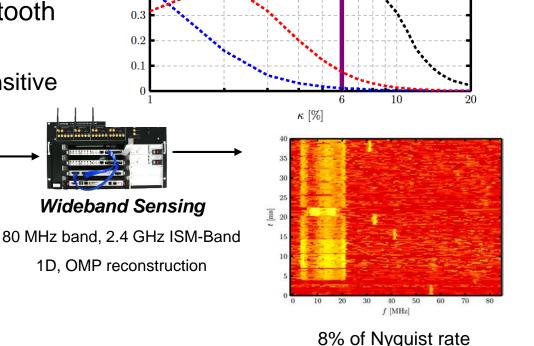
- Research task: Design of CS-spectrum sensing algorithms (input for coexistence management)
- SotA: Sensing approaches using Nyquist sampled signals → wide-band sensing → high sampling rate →costly hardware
- Approach:
 - Exploit sparsity in spectral domain → go for undersampling with CS using autocorrelation properties
 - Edge detection → even more sparse signals
 - Sporadic activity → 2D edge sensing (f and t) by minimizing total variation
- Key challenges:
 - Reconstruct edges in 1D or 2D

Compressive Edge Spectrum Sensing (CESS)

- P_D 1D CESS **-** P_D LS

Key results:

bandwidth 100 MHz, blocks of 20 MHz,1D: OMP, 2D: I1/I2-optimization


Sporadic access with 40% mean occupation

- 1D and 2D outperforms classical LS sensing
- 100% detection at 6% of Nyquist rate

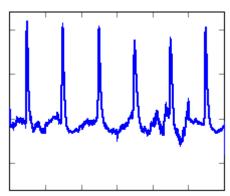
- Proof-of-Concept: WLAN and Bluetooth
 - WLAN: 15% of Nyquist rate works
 - Bluetooth (narrrow band) more sensitive

Bluetooth, WLAN

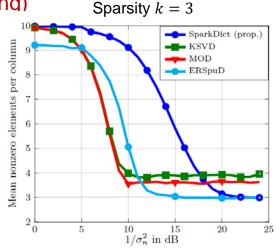
f [MHz]

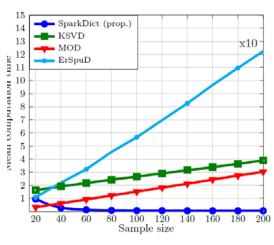
original

 $P_{\rm D}$ bzw.


CS-Signal Aquisition and Reconstruction of Neuronal Signals

- Research task: Reduction of data rate for neural data acquisition
 - Utilize sporadic nature of spikes
 - Design of reconstruction algorithms
- Key challenges:
 - Strict circuit area and power constraint
 - Multiple correlated electrodes
 - → joint reconstruction of correlated signals




source:www.extremetech.com/extreme

Typical neural spike shape

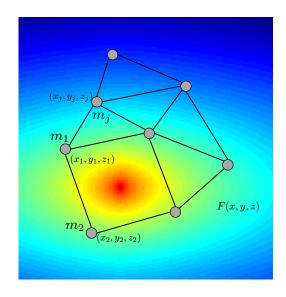
- Sparsity domain unknown
 - → dictionary learning (machine learning)
- Key results:
 - SparkDict: CS reconstruction algorithm for joint reconstruction w/ dictionary learning

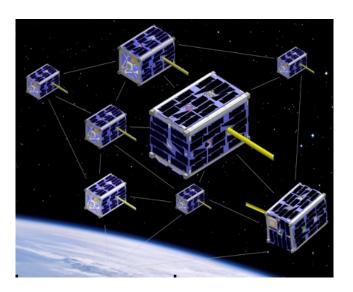
[KSVD] M. Aharon, M. Elad, and A. Bruckstein, k-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation", IEEE Transactions on Signal Processing [MOD] K. Engan, S. O. Aase, and J. H. Husoy (Editors), Method of optimal directions for frame design, 1999, ISBN 0780350413 [ErSpuD] D. A. Spielman, H. Wang, and J. Wright, Exact recovery of sparsely used dictionaries", arXiv preprint arXiv:1206.5882, 2012.

IN-NETWORK-PROCESSING

Distributed Signal Processing

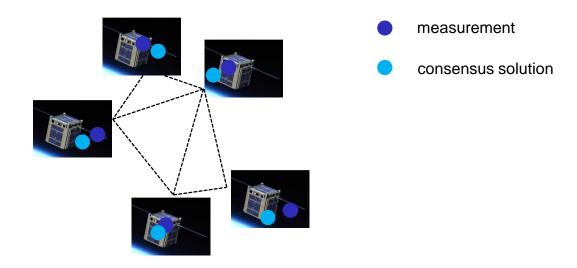
H. Paul, G. Xu, S. Wang, M. Röper, B. Shin, A. Dekorsy
Department of Communications Engineering
University of Bremen




Distributed Processing / In-Network Processing

- Network of nodes perform noisy measurements of same physical quantity, e.g. temperature
- Measurements are processed within multi-agent system/network (In-Network Processing) to perform distributed estimation of physical entity
- Examples:

Environmental monitoring



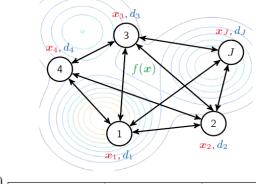
CubeSat swarms e.g. for earth obervations

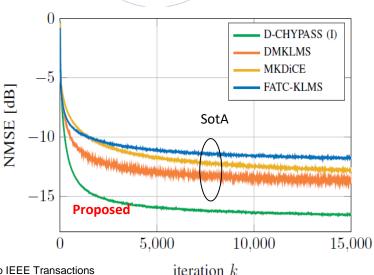
Distributed Processing / In-Network Processing

- Idea: Calculate a function within a network, e.g. averaging, MMSE/LS, Kalman filtering
- Consensus based: Algorithm converges to identical solution at all nodes, e.g. central solution

- Advantages: No single point of failure/trust, data processing in local network (no cloud), communication robustness, more secure (e.g. attacks)
- Challenges: Design of algorithms converging to central (optimum solution) with less communication overhead, facilitating tight integration of wireless communication

Distributed kernel-based regression



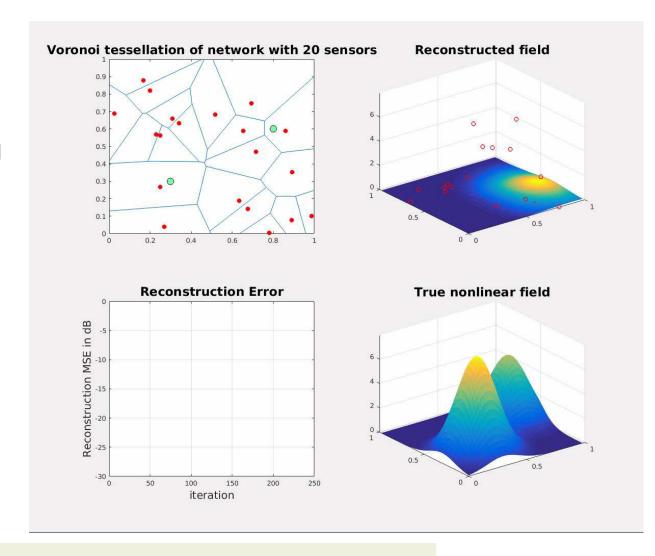

- Research task: Distributed nonlinear regression of any function f(x)
- Application: Predict diffusion field f(x) at positions x using sensor measurements d
- Key challenges:
 - Nonlinear f(x), convergence, communication overhead
- Mathematical approach:
 - Transform all sensor positions x_i by nonlinear kernel function $k(.,x_i)$ into reproducing kernel Hilbert space (RKHS)
 - Unknown nonlinear function f is modeled in linear form

$$f(.) = \sum_{i} w_i k(., x_i)$$

as element of RKHS

- Estimate coefficients w_i by expanding set-theoretic learning to a distributed setting → faster convergence and improved estimation accuracy (NMSE)
- Key results:
 - Distributed kernel-based adaptive learning (D-CHYPASS)

[DMKLMS] Shin, Yukawa, Cavalcante, Dekorsy, "Distributed adaptive learning with multiple kernels in diffusion networks", submitted to IEEE Transactions on Signal Processing, 2018


[MKDiCE] Shin, Paul, Yukawa, Dekorsy, "Distributed nonlinear regression using in-network processing with multiple Gaussian kernels", IEEE SPAWC 2017 [FATC-KLMS] Gao, Chen, Richard, Huang, "Diffusion adaptation over networks with kernel least-mean-square", IEEE CAMSAP 2015

Distributed kernel-based regression

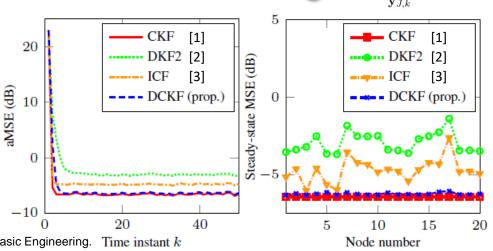
- Demo of mobile sensor network with distributed kernel least squares (KDiCE) algorithm
 - Mobile sensor network with 20 nodes (red)
 - Nonlinear field f(x) with two diffusive sources (green)
 - Sensor moves to centroid of Voronoi cell of reconstructed field

Distributed Consensus-Based Kalman Filtering (DCKF)

 $\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{w}_k$

hidden state \mathbf{x}_k

 $\mathbf{H}_{J,k}$


- Research task: Distributed state estimation for dynamic systems
- Application: Distributed control, e.g. control of a swarm of unmaned autonomous vehicles (UAVs)
- Key challenge: Joint design of control and communication

 Exploit equivalence of KF and MAP estimation in Gaussian setting

- Convergence to central solution proofed
- DCKF ensures consensus on estimates

 $\mathbf{y}_{i,k} = \mathbf{H}_{i,k}\mathbf{x}_k + \mathbf{v}_{i,k}$

^{[3].} A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury, "Information weighted consensus," in Proc. of the 51st IEEE Conf. on Decision and Control, 2012.

^{[1].} R. E. Kalman, "A new approach to linear filtering and prediction problems," Journal of Basic Engineering. Time instant k

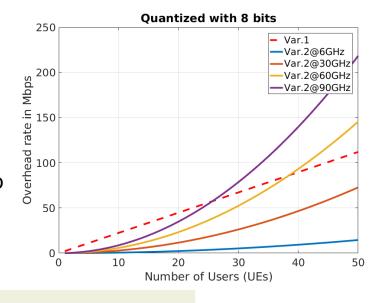
^{[2].} R. Olfati-Saber, "Distributed Kalman filtering for sensor networks," in Proc. of the 46th IEEE Conf. on Decision and Control, 2007.

Distributed Precoding

Research task: Investigations on algorithms for distributed precoder/beamformer design

Application: Distributed RAN (5G) - Downlink

- Key challenges:
 - Computational efficient / low latency
 - Low communication overhead

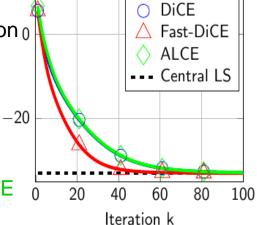

 $\mathbf{x}_j = \mathbf{G}_j \mathbf{s}$; dim(\mathbf{G}_j) = # transmit antennas × # UEs data: \mathbf{s} multiuser vector receive signal: $\mathbf{y}_u = \sum_{j=1}^{N_{SC}} \mathbf{x}_j + \mathbf{n}$; superposition of all SCs

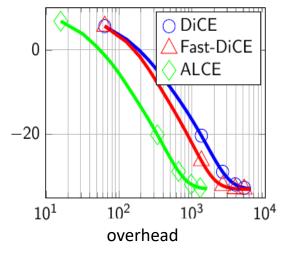
Key results:

- Distributed MMSE (e.g., Richardson (PR) iteration)

- Var.2: The faster the channel the more often we have to update the matrix → overhead increases
- Trade-off between Var1 and Var2

Distributed consensus-based estimation


- Research task: Design an analysis of distributed estimation algorithms
- Application: Distributed RAN (5G) Uplink → Small Cells share information to jointly estimate received user signals → distributed multi-user detection


Distributed consensus-based LS problem

$$\begin{array}{c} \text{central LS problem} \\ \widehat{\mathbf{s}} = \arg\min_{\mathbf{s}} \sum_{j=1}^{J} ||\mathbf{x}_j - \mathbf{H}_j \mathbf{s}||^2 \equiv \\ \left\{ \widehat{\mathbf{s}}_j | j \in \mathcal{J} \right\} = \arg\min_{\left\{ \mathbf{s}_j | j \in \mathcal{J} \right\}} \sum_{j=1}^{J} ||\mathbf{x}_j - \mathbf{H}_j \mathbf{s}_j||^2 \\ \text{s.t.} \quad \mathbf{s}_j = \mathbf{s}_i \quad \forall \quad j \in \mathcal{J}, \quad i \in \mathcal{N}_j \\ \end{array}$$

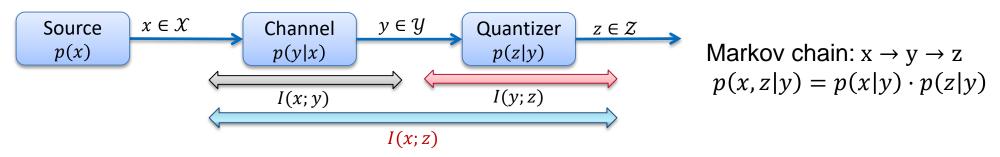
 \mathcal{J} : set of nodes \mathcal{N}_j : set of neighbor nodes of node j

- Key challenges:
 - Guarantee convergence to central solution 0
 - Ensure high convergence rate and/or blow communication overhead

- Key results:
 - Several algorithms DiCE/Fast-DiCE/ALCE

INFORMATION BOTTLENECK

Relevant Information Processing

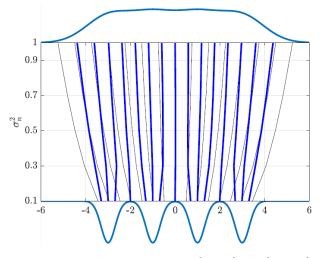

D. Wübben, S. Hassanpour, T. Monsees, A. Dekorsy Department of Communications Engineering University of Bremen

Information Bottleneck Method

- Mutual Information I(x; y): amount of information one random variable contains about the other
- Conventional quantization information in signal x is not specifically considered, just by means of received signal y
 - Minimization of MSE $d(y,z) = \mathbb{E}\{|y-z|^2\}\} \rightarrow \text{Lloyd-Max/LBG algorithm}$
 - Rate-Distortion Theory: Minimization of compression rate I(y; z), i.e. number of bits, for given maximum distortion $d(r, q) \le D \to Blahut$ -Arimoto algorithm
- Information Bottleneck Method (IBM)
 - Relevant information processing: interest is on information of source signal x
 - Trade-off between compression rate and relevant information

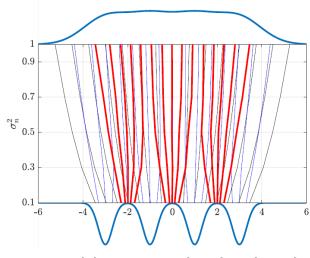
$$p^*(z|y) = \arg\min_{p(z|y)} \left(I(y;z) - \beta I(x;z) \right) \text{ with } |z| \le N$$

Information Bottleneck Method


Quantization boundaries: 4-ASK over AWGN, noise variance σ_n^2 , quantized to $N_z = 16$

Uniform Quantizer (UQ)

0.7 0.7 0.3 0.1 -6 -4 -2 0 2 4 6

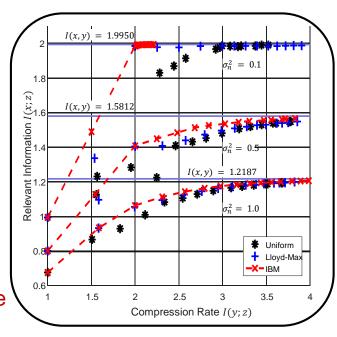

equidistant quantization

Lloyd-Max Quantizer (LM)

concentrates quantization levels around expected signals $(\pm 1, \pm 3)$

KL-Means-IB Algorithm

considers quantization levels around the middle values $(\pm 2, 0)$


Information Bottleneck Method

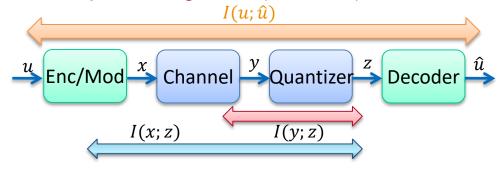
Research task: Design and analyze IBM algorithms

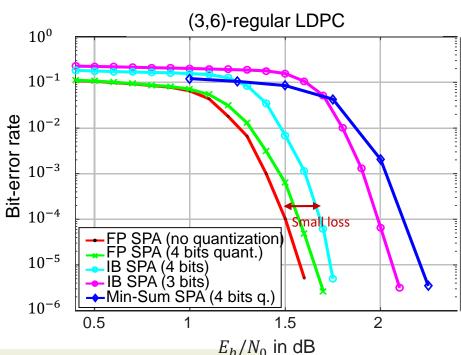
$$p^{\star}(z|y) = \arg\min_{p(z|y)} \left(I(y;z) - \beta I(x;z) \right) \text{ with } |z| \leq N \qquad 0 < \beta < \infty \quad \text{neither convex nor concave stochastic quantizer } 0 \leq p(z|y) \leq 1$$

$$\beta \to \infty \quad \text{concave optimization with optimal deterministic solution } p(z|y) \in \{0,1\}$$

- Key challenges:
 - Quantizer design is a non-convex optimization problem
- Key results:
 - Proving equivalence among bunch of algorithmic approaches
 - SotA IBM algorithms:
 output z is a random variable, i.e. its values are indices
 → new pre-processing is required, e.g. new APP estimator
 - Affinity propagation based IBM quantizer $(\beta \to \infty)$ output z representes a signal value \to we can keep conventional pre-processing
 - Keeping more relevant information with lower compression rate

Information Bottleneck Method - Receiver


- Research task: Analysis of Information Bottleneck based receivers
 - LDPC decoder: Information Bottleneck → discrete sum-product algorithm (IBM-SPA)


Key challenges:

- Trade-off between compression rate I(y; z) and end-to-end information $I(u; \hat{u})$
- Information Bottleneck based SPA (IBM-SPA)
 - → instead of complex floating point operations discrete implementation by using LUTs

Key results:

- Trade-off between complexity and performance
- IBM-SPA with 4-bit shows small loss compared to floating point SPA w/ quantization

^[1] F.J.C. Romero and B. Kurkoski, LDPC Decoding Mappings That Maximize Mutual, Information, IEEE Journal on Selected Areas in Communications

^[2] J. Lewandowsky, M. Stark, G. Bauch, Optimum Message Mapping LDPC Decoders derived from the Sum-Product Algorithm, IEEE ICC 2016

LOW LATENCY, SHORT PACKAGES

HiFlecs

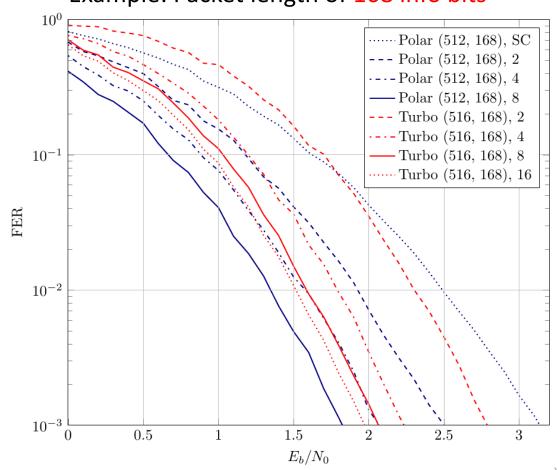
C. Bockelmann, J. Demel, A. Dekorsy
Department of Communications Engineering
University of Bremen

Hochperformante, sichere Funktechnologien und deren Systemintegration in zukünftige industrielle Closed-Loop Automatisierungslösungen

Coordination: Prof. Dr. Armin Dekorsy, University of Bremen

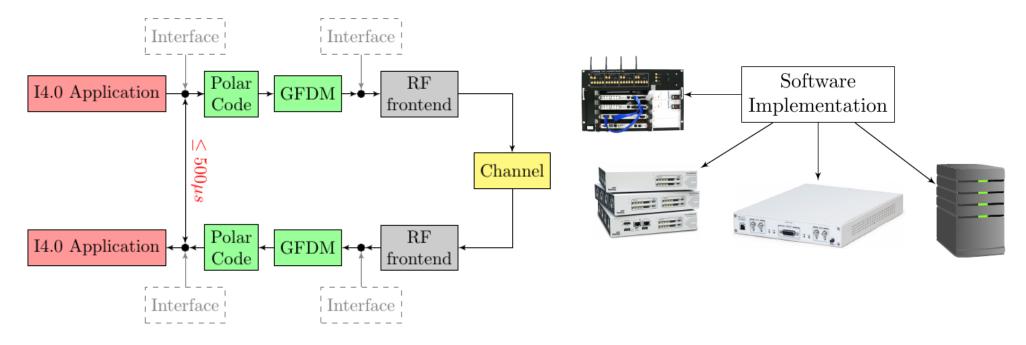
Project Goal

Design of an industrial radio system


- Extremely low latency (< 1ms)
- Extremely high availability and reliability (PER < 10⁻⁹)

GEFÖRDERT VOM

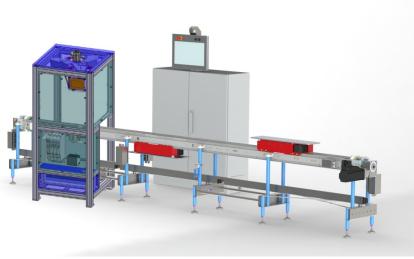
PHY – Channel coding for short packages

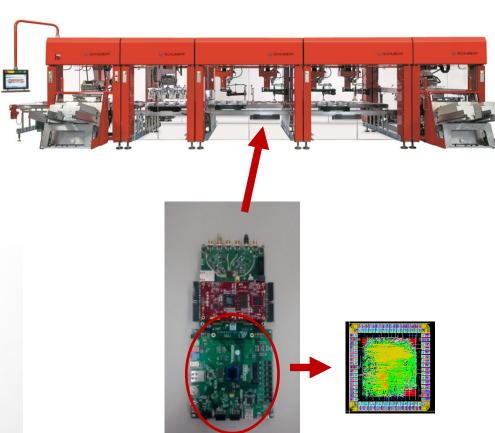

- Polar Codes with CRC vs. Turbo-Codes (e.g. used in LTE)
- Decoder: List-Decoder for Polar Codes
- Example: Packet length of 168 info bits

Polar Codes outperform Turbo Codes

PHY - Latency optimized SDR Baseband Implementation

- **GFDM scheme:** low latency implementation
- Polar Codes: State-of-the-Art high throughput implementation
- Phy processing latency less than 1ms per link for typical block sizes used in control loop applications





Demonstrator: Transmodul line of a packing machine

- Wireless data transmission between control module (SPS) and transport modules by HiFlecs
- Synchronization with delta-robot and linear measurement system via HiFlecs (cycle time 1ms)

Grafiken: Gerhard Schubert GmbH

Publications (abstract)

Compressive Sensing

- Exploiting channel coding in CS-MUD [ETT13, TCom15], Missed Detections / False alarms control [SCC15]
 Joint channel, activity and data estimation [ISWCS13], PHY/MAC integration [Globe14, ICC17]
- PhD-Theses: Dr. Henning Schepker (2016), Dr. Fabian Monsees (2017)
- C. Bockelmann, E. Beck, A. Dekorsy, One- and Two-dimensional Compressive Edge Spectrum Sensing, KommA 2017
- E. Beck, C. Bockelmann, A. Dekorsy, Compressed Edge Spectrum Sensing for Wideband Cognitive Radios, submitted to EUSIPCO 2018
- E. Beck, C. Bockelmann, A. Dekorsy, CESS: Extensions and Practical Considerations, submitted to at-Automatisierungstechnik (special issue)
- E. Beck, Compressed Spectrum Sensing for Coginitive Radio in Time and Space, Master-Thesis Universyity of Bremen, 2017
- T. Schnier, C. Bockelmann, A. Dekorsy, RSCS: Minimum Measurement MMV Deterministic Compressed Sensing based on Reed Solomon Coding, Asilomar 2015
- T. Schnier, C. Bockelmann, A. Dekorsy, SparkDict: A Fast Dictionary Learning Algorithm, 25th European Signal Processing Conference (EUSIPCO 2017)

In-Network Processing

- H. Paul, J. Fliege, A. Dekorsy, "In-Network-Processing: Distributed Consensus-Based Linear Estimation," IEEE Communications Letters, vol.17, no.1, Jan. 2013.
- G. Xu, H. Paul, D. Wübben, A. Dekorsy, "Distributed Augmented Lagrangian Method for Cooperative Estimation in Small Cell Networks" SCC 2015
- G. Xu, H. Paul, T. Schier, P. Svedman, A. Dekorsy, "Distributed precoding by in-network processing," European Wireless 2017 (EW17), May 2017.
- M. Röper, P. Svedman, A. Dekorsy, "Distributed precoder design under per-small cell power constraint," IEEE VTC2018-Fall, August 2018. (planned)
- S. Wang, H. Paul, A. Dekorsy, "Distributed Optimal Consensus-Based Kalman Filtering and Its Relation to MAP", IEEE ICASSP 2018
- Shin, Yukawa, Cavalcante, Dekorsy: Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks, submitted to IEEE Transactions on Signal Processing, Januar 2018
- Shin, Yukawa, Cavalcante, Dekorsy: A Hybrid Dictionary Approach for Distributed Kernel Adaptive Filtering in Diffusion Networks, IEEE ICASSP 201
- Shin, Paul, Yukawa, Dekorsy: Distributed Nonlinear Regression Using In-Network Processing With Multiple Gaussian Kernels, SPAWC 2017
- Shin, Paul, Dekorsy, Distributed Kernel Least Squares for Nonlinear Regression Applied to Sensor Networks, EUSIPCO, 2016
- Shin, Paul, Dekorsy: Spatial Field Reconstruction with Distributed Kernel Least Squares in Mobile Sensor Networks, SCC17

Information Bottleneck

- S. Hassanpour, D. Wübben, A. Dekorsy, A Graph-Based Message Passing Approach for Noisy Source Coding via Information Bottleneck Principle, submitted to GLOBECOM 2018
- S. Hassanpour, D. Wübben, A. Dekorsy, On the Equivalence of Double Maxima and KL-Means for Information Bottleneck-Based Source Coding, WCNC 2018
- S. Hassanpour, D. Wübben, A. Dekorsy, On the Equivalence of Two Information Bottleneck-Based Routines Devised for Joint Source-Channel Coding, ICT 2018
- S. Hassanpour, D. Wübben, A. Dekorsy, B. Kurkoski: On the Relation Between the Asymptotic Performance of Different Algorithms for Information Bottleneck Framework, ICC 2017
- S. Hassanpour, D. Wübben, A. Dekorsy: Overview and Investigation of Algorithms for the Information Bottleneck Method, SCC 2017
- D. Wübben: The Information Bottleneck Method: Fundamental Idea and Algorithmic Implementations, AEW 2017
- T. Monsees, D. Wübben, A. Dekorsy, Information Bottleneck based Implementation of the Sum-Product Algorithm for Binary LDPC Codes, ESIT 2017
- T. Monsees, D. Wübben, A. Dekorsy, Channel Optimized Quantization and Decoding, ITG Fachgruppe "Angewandte Informationstheorie", Oct. 2017

Low latency/short packet coding

- J. Demel, C. Bockelmann, A. Dekorsy, An optimized GFDM software implementation for low-latency, FOSDEM 2018
- J. Demel, C. Bockelmann, A. Dekorsy, A. Rode, S. Koslowski, F. Jondral, An optimized GFDM software implementation for future Cloud-RAN and field tests, GNU Radio Conference 2017
- J. Demel, C. Bockelmann, A. Dekorsy, Evaluation of a Software Defined GFDM Implementation for Industry 4.0 Applications, ICIT 2017

www.ant.uni-bremen.de

Thank you for your attention!

