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Future Wireless Networks
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Future Wireless Networks
 Key challenges:

 Massive amount of connections
 Massive amount of data
 Huge variety of data rates and latencies
 Huge variety of reliable requirements
 …

 Key enabling/driving technologies
 Wireless communication technologies (e.g. massive MIMO, mmWave, cooperative

communications, relaying)
 Signal and data processing approaches (e.g. compressive sensing, in-network processing, 

relevant information processing, graph-based processing, machine learning) 
 Information theoretical approaches (e.g. Information Bottleneck Framework)
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COMPRESSIVE SENSING
- Signal Structure Processing-

C. Bockelmann, F. Monsees, H. Schepker. E. Beck, T. Schnier, A. Dekorsy



The Compressive Sensing Problem in a Nutshell
 Donoho/Candes 2006: Signal 𝐳𝐳 ∈ ℝ𝟏𝟏×𝑵𝑵 is compressible in some basis 𝚽𝚽 ∈ ℝ𝑵𝑵×𝑵𝑵

 Compressible: 

𝐱𝐱 is 𝑘𝑘-sparse

 Observe 𝐳𝐳 by measurement matrix 𝚿𝚿 ∈ ℝ𝑴𝑴×𝑵𝑵 with 𝑀𝑀 < 𝑁𝑁 noisy observations

with noise 𝐧𝐧 ∈ ℝ𝑀𝑀 and 𝐀𝐀 = 𝚽𝚽𝚿𝚿 ∈ ℝ𝑀𝑀×𝑁𝑁

 Task: Recover 𝐱𝐱 ∈ ℝ𝑁𝑁 using 𝑀𝑀 < 𝑁𝑁 measurements in vector 𝐲𝐲 by exploiting the signal
structure that 𝐱𝐱 is sparse → 𝑙𝑙𝑙/𝑙𝑙𝑙-optimization problems
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CS in Communications
 Applications

 Channel Estimation
 Most impulse responses of wireless channels are sparse in sample clock

 Sporadic Communication
 Machine type traffic leads to sparse detection problems

 Spectrum Sensing
 Cognitive radio idea: Spectrum or edges of spectrum are sparse

 Key differences to standard CS problems
 Forward Error Correction: non-zero elements in 𝐱𝐱 are part of a codeword

 Additional structure that can be exploited, e.g. by iterative decoding

 Modulation: non-zero elements in x are not continuous
 Discrete symbol alphabets → requires adapted CS-algorithms
→ Digital CS
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Compressive Sensing Multi-User Detection (CS-MUD)
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 IoT/5G challenge: Massive Machine type Communication (MMC)
 MMC is usually of low power, low rate and intermittent activity
 New PHY/MAC are needed to handle massive access with very low control signaling overhead

 Task: Design sparsity exploiting multi-user receivers (linear and non-linear) for activity,
data and channel estimation

sporadic activity→ sparse multi-user signal
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CS-MUD: Graph-based detection

 Research task: Message Passing for CS-MUD
 Graph-based CS-MUD detector
 Exchange of soft information (PDFs)
 Spreading based transmission

 Key challenge:
 Joint soft activity and data detection

 Key results:
 Plot: spreading sequence length M required for a 

FER<𝑙0−3

 𝑀𝑀 <𝑁𝑁 → overloaded system
 Frame Belief Propagation (Frame BP): slight

increase in M for high 𝑝𝑝𝑎𝑎
 Frame BP outperforms state-of-the art algorithms

such as GOMP and bcSIC

N=30 Nodes, Frame Length L=30 code-symbols

Repetition code R=5
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Multi-Carrier Compressive Sensing Multi-User Detection (MCSM)  
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Compressive Edge Spectrum Sensing (CESS)

 Research task: Design of CS-spectrum sensing
algorithms (input for coexistence management)

 SotA: Sensing approaches using Nyquist sampled
signals → wide-band sensing → high sampling rate 
→costly hardware

 Approach:
 Exploit sparsity in spectral domain → go for

undersampling with CS using autocorrelation properties
 Edge detection → even more sparse signals
 Sporadic activity → 2D edge sensing (𝑓𝑓 and 𝑡𝑡) by

minimizing total variation

 Key challenges:
 Reconstruct edges in 1D or 2D 
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Compressive Edge Spectrum Sensing (CESS)
 Key results:

 1D and 2D outperforms classical LS sensing
 100% detection at 6% of Nyquist rate

Sporadic access with 40% mean occupation

bandwidth 100 MHz, blocks of 20 MHz,1D: OMP, 2D: l1/l2-optimization 

 Proof-of-Concept: WLAN and Bluetooth
 WLAN: 15% of Nyquist rate works
 Bluetooth (narrrow band) more sensitive  

Bluetooth, WLAN

Wideband Sensing
80 MHz band, 2.4 GHz ISM-Band

1D, OMP reconstruction
original

Nyquist rate50% of Nyquist rate25% of Nyquist rate15% of Nyquist rate8% of Nyquist rate
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 Research task: Reduction of data rate for neural data acquisition 
 Utilize sporadic nature of spikes
 Design of reconstruction algorithms

 Key challenges:
 Strict circuit area and power constraint
 Multiple correlated electrodes 

→ joint reconstruction of correlated signals
 Sparsity domain unknown

→ dictionary learning (machine learning)

 Key results:
 SparkDict: CS reconstruction

algorithm for joint reconstruction
w/ dictionary learning

CS-Signal Aquisition and Reconstruction of Neuronal Signals 
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source:www.extremetech.com/extreme

Sparsity 𝑘𝑘 = 3

[KSVD] M. Aharon, M. Elad, and A. Bruckstein, k-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation", IEEE Transactions on Signal Processing 
[MOD] K. Engan, S. O. Aase, and J. H. Husoy (Editors), Method of optimal directions for frame design, 1999, ISBN 0780350413
[ErSpuD] D. A. Spielman, H. Wang, and J. Wright, Exact recovery of sparsely used dictionaries", arXiv preprint arXiv:1206.5882, 2012.
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IN-NETWORK-PROCESSING
Distributed Signal Processing

H. Paul, G. Xu, S. Wang, M. Röper, B. Shin, A. Dekorsy 



Distributed Processing / In-Network Processing

 Network of nodes perform noisy measurements of same physical quantity, 
e.g. temperature

 Measurements are processed within multi-agent system/network (In-Network 
Processing) to perform distributed estimation of physical entity

 Examples: 
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m1

mj

m2
(x2; y2; z2)

(x1; y1; z1)

(xj ; yj ; zj)

F (x; y; z)

Environmental monitoring CubeSat swarms e.g. for earth obervations
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Distributed Processing / In-Network Processing

16

 Idea: Calculate a function within a network, e.g. averaging, MMSE/LS, Kalman 
filtering

 Consensus based: Algorithm converges to identical solution at all nodes, e.g. central
solution

 Advantages: No single point of failure/trust, data processing in local network (no
cloud), communication robustness, more secure (e.g. attacks) 

 Challenges: Design of algorithms converging to central (optimum solution) with less
communication overhead, facilitating tight integration of wireless communication

measurement

consensus solution
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SotA

Proposed

 Research task: Distributed nonlinear regression of any function 𝑓𝑓(𝑥𝑥)
 Application: Predict diffusion field 𝑓𝑓(𝑥𝑥) at positions 𝑥𝑥 using sensor measurements 𝑑𝑑
 Key challenges: 

 Nonlinear 𝑓𝑓 𝑥𝑥 , convergence, communication overhead
 Mathematical approach:

 Transform all sensor positions 𝑥𝑥𝑖𝑖 by nonlinear kernel function 
𝑘𝑘(. , 𝑥𝑥𝑖𝑖) into reproducing kernel Hilbert space (RKHS)

 Unknown nonlinear function 𝑓𝑓 is modeled in linear form
𝑓𝑓 . = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑘𝑘(. , 𝑥𝑥𝑖𝑖)

as element of RKHS
 Estimate coefficients 𝑤𝑤𝑖𝑖 by expanding set-theoretic

learning to a distributed setting → faster convergence and
improved estimation accuracy (NMSE)

 Key results:
 Distributed kernel-based adaptive learning (D-CHYPASS)

Distributed kernel-based regression
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[DMKLMS] Shin, Yukawa, Cavalcante, Dekorsy, “Distributed adaptive learning with multiple kernels in diffusion networks”, submitted to IEEE Transactions 
on Signal Processing, 2018

[MKDiCE] Shin, Paul, Yukawa, Dekorsy, “Distributed nonlinear regression using in-network processing with multiple Gaussian kernels”, IEEE SPAWC 2017

[FATC-KLMS] Gao, Chen, Richard, Huang, “Diffusion adaptation over networks with kernel least-mean-square”,  IEEE CAMSAP 2015
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Distributed kernel-based regression

 Demo of mobile sensor network with distributed kernel least squares (KDiCE) algorithm
 Mobile sensor network with

20 nodes (red)
 Nonlinear field 𝑓𝑓(𝑥𝑥) with two

diffusive sources (green)
 Sensor moves to centroid of 

Voronoi cell of reconstructed
field

18
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[1]
[2]
[3]

[1]
[2]
[3]

 Research task: Distributed state estimation for dynamic systems

 Application: Distributed control, e.g. control of a swarm of unmaned
autonomous vehicles (UAVs) 

 Key challenge: Joint design of control and communication
 Distributely estimate hidden states of system to be controlled

by using local observation of states → Distributed Kalman Filtering

 Mathematical approach:
 Exploit equivalence of KF and MAP estimation

in Gaussian setting

 Key results: DCKF algorithm
 Convergence to central solution proofed
 DCKF ensures consensus on estimates

Distributed Consensus-Based Kalman Filtering (DCKF)

19

[1]. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering.
[2]. R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in Proc. of the 46th IEEE Conf. on Decision and Control, 2007.
[3]. A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury, “Information weighted consensus,” in Proc. of the 51st IEEE Conf. on Decision and Control,2012.
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 Research task: Investigations on algorithms for distributed precoder/beamformer design
 Application: Distributed RAN (5G) - Downlink
 Key challenges:

 Computational efficient / low latency
 Low communication overhead

𝐱𝐱𝒋𝒋 = 𝐆𝐆𝒋𝒋𝐬𝐬; dim(𝐆𝐆𝑗𝑗 ) = # transmit antennas × # UEs
data: 𝐬𝐬 multiuser vector
receive signal: 𝐲𝐲𝑢𝑢 = ∑𝑗𝑗=1

𝑁𝑁𝑆𝑆𝑆𝑆 𝐱𝐱𝑗𝑗 + 𝐧𝐧; superposition of all SCs

 Key results:
 Distributed MMSE (e.g., Richardson (PR) iteration)
 Var.1: Communicate transmitted signals ∝ # UEs
 Var.2: Communicate precoding matrices ∝ (# UEs)2

 Var.2: The faster the channel the more often we have to
update the matrix → overhead increases

 Trade-off between Var1 and Var2

Distributed Precoding

20
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overhead

 Research task: Design an analysis of distributed estimation algorithms
 Application: Distributed RAN (5G) – Uplink → Small Cells share information to jointly

estimate received user signals → distributed multi-user detection

 Key challenges:
 Guarantee convergence to central solution
 Ensure high convergence rate and/or

low communication overhead

 Key results:
 Several algorithms DiCE/Fast-DiCE/ALCE

Distributed consensus-based estimation 

21

≡

central LS problem
Distributed consensus-based LS problem
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INFORMATION BOTTLENECK
Relevant Information Processing

D. Wübben, S. Hassanpour, T. Monsees, A. Dekorsy 
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 Mutual Information 𝐼𝐼 𝑥𝑥; 𝑦𝑦 : amount of information one random variable contains about 
the other

 Conventional quantization – information in signal 𝑥𝑥 is not specifically considered, just 
by means of received signal 𝑦𝑦
 Minimization of MSE 𝑑𝑑 𝑦𝑦, 𝑧𝑧 = 𝔼𝔼 𝑦𝑦 − 𝑧𝑧 2 ) → Lloyd-Max/LBG algorithm
 Rate-Distortion Theory:  Minimization of compression rate 𝐼𝐼(𝑦𝑦; 𝑧𝑧), i.e. number of bits, for given 

maximum distortion 𝑑𝑑 𝑟𝑟, 𝑞𝑞 ≤ 𝐷𝐷 → Blahut-Arimoto algorithm 

 Information Bottleneck Method (IBM)
 Relevant information processing: interest is on information of source signal 𝑥𝑥
 Trade-off between compression rate and relevant information

Information Bottleneck Method

Markov chain: x → y → z
𝑝𝑝 𝑥𝑥, 𝑧𝑧 𝑦𝑦 = 𝑝𝑝 𝑥𝑥 𝑦𝑦 ⋅ 𝑝𝑝 𝑧𝑧 𝑦𝑦

𝑝𝑝⋆ 𝑧𝑧 𝑦𝑦 = arg min
𝑝𝑝 𝑧𝑧 𝑦𝑦

𝐼𝐼 𝑦𝑦; 𝑧𝑧 − 𝛽𝛽𝐼𝐼 𝑥𝑥; 𝑧𝑧 with  𝑍𝑍 ≤ 𝑁𝑁

𝑥𝑥 ∈ 𝒳𝒳

𝐼𝐼(𝑥𝑥; 𝑦𝑦)

Source
𝑝𝑝 𝑥𝑥

𝐼𝐼(𝑥𝑥; 𝑧𝑧)

Channel
𝑝𝑝 𝑦𝑦 𝑥𝑥

Quantizer
𝑝𝑝 𝑧𝑧 𝑦𝑦

𝑦𝑦 ∈ 𝒴𝒴 𝑧𝑧 ∈ 𝒵𝒵

𝐼𝐼(𝑦𝑦; 𝑧𝑧)
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Information Bottleneck Method

Quantization boundaries: 4-ASK over AWGN, noise variance 𝜎𝜎𝑛𝑛2, quantized to 𝑁𝑁𝑧𝑧 = 𝑙6

24

𝑥𝑥 ∈ 𝒳𝒳

𝐼𝐼(𝑥𝑥; 𝑦𝑦)

Source
𝑝𝑝 𝑥𝑥

𝐼𝐼(𝑥𝑥; 𝑧𝑧)

Channel
𝑝𝑝 𝑦𝑦 𝑥𝑥

Quantizer
𝑝𝑝 𝑧𝑧 𝑦𝑦

𝑦𝑦 ∈ 𝒴𝒴 𝑧𝑧 ∈ 𝒵𝒵

𝐼𝐼(𝑦𝑦; 𝑧𝑧)

KL-Means-IB Algorithm

considers quantization levels 
around the middle values (±𝑙,0)

Lloyd-Max Quantizer (LM)

concentrates quantization levels 
around expected signals (±𝑙, ±3)

Uniform Quantizer (UQ)

equidistant quantization
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Information Bottleneck Method

 Research task: Design and analyze IBM algorithms

 Key challenges:
 Quantizer design is a non-convex optimization problem 

 Key results:
 Proving equivalence among bunch of algorithmic approaches
 SotA IBM algorithms:

output 𝑧𝑧 is a random variable, i.e. its values are indices
→ new pre-processing is required, e.g. new APP estimator 

 Affinity propagation based IBM quantizer (𝛽𝛽 → ∞)
output 𝑧𝑧 representes a signal value→ we can keep
conventional pre-processing

 Keeping more relevant information with lower compression rate

25

𝑝𝑝⋆ 𝑧𝑧 𝑦𝑦 = arg min
𝑝𝑝 𝑧𝑧 𝑦𝑦

𝐼𝐼 𝑦𝑦; 𝑧𝑧 − 𝛽𝛽𝐼𝐼 𝑥𝑥; 𝑧𝑧 with 𝑍𝑍 ≤ 𝑁𝑁 0 < 𝛽𝛽 < ∞ neither convex nor concave
stochastic quantizer 0 ≤ 𝑝𝑝 𝑧𝑧 𝑦𝑦 ≤ 𝑙

𝛽𝛽 → ∞ concave optimization with optimal 
deterministic solution 𝑝𝑝 𝑧𝑧 𝑦𝑦 ∈ {0,𝑙}
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Prof. Dr. Dekorsy – New Directions in Wireless Communications …….

Information Bottleneck Method - Receiver
 Research task: Analysis of Information Bottleneck based receivers

 LDPC decoder: Information Bottleneck → discrete sum-product algorithm (IBM-SPA)

 Key challenges:
 Trade-off between compression rate 𝐼𝐼(𝑦𝑦; 𝑧𝑧)

and end-to-end information 𝐼𝐼(𝑢𝑢; �𝑢𝑢)
 Information Bottleneck based SPA (IBM-SPA) 

→ instead of complex floating point operations
discrete implementation by using LUTs

 Key results:
 Trade-off between complexity and performance
 IBM-SPA with 4-bit shows small loss compared

to floating point SPA w/ quantization
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[1] F.J.C. Romero and B. Kurkoski, LDPC Decoding Mappings That Maximize Mutual, 
Information, IEEE Journal on Selected Areas in Communications

[2] J. Lewandowsky, M. Stark, G. Bauch, Optimum Message Mapping LDPC Decoders 
derived from the Sum-Product Algorithm, IEEE ICC 2016
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LOW LATENCY, SHORT PACKAGES

C. Bockelmann, J. Demel, A. Dekorsy 

HiFlecs



28www.hiflecs.de

Hochperformante, sichere Funktechnologien
und deren Systemintegration in zukünftige industrielle 
Closed-Loop Automatisierungslösungen

Coordination: Prof. Dr. Armin Dekorsy, University of Bremen
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Project Goal

Design
of

an industrial radio system

 Extremely low latency (< 1ms)
 Extremely high availability and reliability (PER < 10-9)
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PHY – Channel coding for short packages

• Polar Codes with CRC vs. Turbo-Codes (e.g. used in LTE)
• Decoder: List-Decoder for Polar Codes
• Example: Packet length of 168 info bits

Polar Codes outperform
Turbo Codes 
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PHY - Latency optimized SDR Baseband 
Implementation

• GFDM scheme: low latency implementation
• Polar Codes: State-of-the-Art high throughput implementation

• Phy processing latency less than 1ms per link for typical block sizes used in control
loop applications
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Demonstrator: Transmodul line of a packing machine

 Wireless data transmission between 
control module (SPS) and transport 
modules by HiFlecs

 Synchronization with delta-robot and 
linear measurement system via HiFlecs
(cycle time 1ms)

Grafiken: Gerhard Schubert GmbH
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Publications (abstract)
 Compressive Sensing

 Exploiting channel coding in CS-MUD [ETT13, TCom15], Missed Detections / False alarms control [SCC15]
Joint channel, activity and data estimation [ISWCS13], PHY/MAC integration [Globe14, ICC17]

 PhD-Theses: Dr. Henning Schepker (2016), Dr. Fabian Monsees (2017)
 C. Bockelmann, E. Beck, A. Dekorsy, One- and Two-dimensional Compressive Edge Spectrum Sensing, KommA 2017
 E. Beck, C. Bockelmann, A. Dekorsy, Compressed Edge Spectrum Sensing for Wideband Cognitive Radios, submitted to EUSIPCO 2018
 E. Beck, C. Bockelmann, A. Dekorsy, CESS: Extensions and Practical Considerations, submitted to at-Automatisierungstechnik (special issue)
 E. Beck, Compressed Spectrum Sensing for Coginitive Radio in Time and Space, Master-Thesis Universyity of Bremen, 2017
 T. Schnier, C. Bockelmann, A. Dekorsy, RSCS: Minimum Measurement MMV Deterministic Compressed Sensing based on Reed Solomon Coding, Asilomar 2015
 T. Schnier, C. Bockelmann, A. Dekorsy, SparkDict: A Fast Dictionary Learning Algorithm, 25th European Signal Processing Conference (EUSIPCO 2017)

 In-Network Processing
 H. Paul, J. Fliege, A. Dekorsy, “In-Network-Processing: Distributed Consensus-Based Linear Estimation,” IEEE Communications Letters, vol.17, no.1, Jan. 2013.
 G. Xu, H. Paul, D. Wübben, A. Dekorsy, “Distributed Augmented Lagrangian Method for Cooperative Estimation in Small Cell Networks” SCC 2015
 G. Xu, H. Paul, T. Schier, P. Svedman, A. Dekorsy, “Distributed precoding by in-network processing,” European Wireless 2017 (EW17), May 2017.
 M. Röper, P. Svedman, A. Dekorsy, “Distributed precoder design under per-small cell power constraint,” IEEE VTC2018-Fall , August 2018. (planned)
 S. Wang, H. Paul, A. Dekorsy, „Distributed Optimal Consensus-Based Kalman Filtering and Its Relation to MAP“, IEEE ICASSP 2018
 Shin, Yukawa, Cavalcante, Dekorsy: Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks, submitted to IEEE Transactions on Signal Processing, Januar 2018
 Shin, Yukawa, Cavalcante, Dekorsy: A Hybrid Dictionary Approach for Distributed Kernel Adaptive Filtering in Diffusion Networks, IEEE ICASSP 201
 Shin, Paul, Yukawa, Dekorsy: Distributed Nonlinear Regression Using In-Network Processing With Multiple Gaussian Kernels, SPAWC 2017
 Shin, Paul, Dekorsy, Distributed Kernel Least Squares for Nonlinear Regression Applied to Sensor Networks, EUSIPCO, 2016
 Shin, Paul, Dekorsy: Spatial Field Reconstruction with Distributed Kernel Least Squares in Mobile Sensor  Networks, SCC17 

 Information Bottleneck
 S. Hassanpour, D. Wübben, A. Dekorsy, A Graph-Based Message Passing Approach for Noisy Source Coding via Information Bottleneck Principle, submitted to GLOBECOM 2018
 S. Hassanpour, D. Wübben, A. Dekorsy, On the Equivalence of Double Maxima and KL-Means for Information Bottleneck-Based Source Coding, WCNC 2018
 S. Hassanpour, D. Wübben, A. Dekorsy, On the Equivalence of Two Information Bottleneck-Based Routines Devised for Joint Source-Channel Coding, ICT 2018
 S. Hassanpour, D. Wübben, A. Dekorsy, B. Kurkoski: On the Relation Between the Asymptotic   Performance of Different Algorithms for Information Bottleneck Framework, ICC 2017
 S. Hassanpour, D. Wübben, A. Dekorsy: Overview and Investigation of Algorithms for the Information Bottleneck Method, SCC 2017
 D. Wübben: The Information Bottleneck Method: Fundamental Idea and Algorithmic Implementations, AEW 2017
 T. Monsees, D. Wübben, A. Dekorsy, Information Bottleneck based Implementation of the Sum-Product Algorithm for Binary LDPC Codes, ESIT 2017 
 T. Monsees, D. Wübben, A. Dekorsy, Channel Optimized Quantization and Decoding, ITG Fachgruppe “Angewandte Informationstheorie”, Oct. 2017

 Low latency/short packet coding
 J. Demel, C. Bockelmann, A. Dekorsy, An optimized GFDM software implementation for low-latency, FOSDEM 2018 
 J. Demel, C. Bockelmann, A. Dekorsy, A. Rode, S. Koslowski, F. Jondral, An optimized GFDM software implementation for future Cloud-RAN and field tests, GNU Radio Conference 2017
 J. Demel, C. Bockelmann, A. Dekorsy, Evaluation of a Software Defined GFDM Implementation for Industry 4.0 Applications, ICIT 2017

33

www.ant.uni-bremen.de



Prof. Dr. Dekorsy – New Directions in Wireless Communications …….

Thank you for your attention!

34


	New Directions in �Wireless Communication Research and What they Will Enable
	Future Wireless Networks
	Future Wireless Networks
	Compressive Sensing
	The Compressive Sensing Problem in a Nutshell
	CS in Communications
	Compressive Sensing Multi-User Detection (CS-MUD)
	CS-MUD: Graph-based detection
	Multi-Carrier Compressive Sensing Multi-User Detection (MCSM)  
	MCSM Testbed
	Compressive Edge Spectrum Sensing (CESS)
	Compressive Edge Spectrum Sensing (CESS)
	CS-Signal Aquisition and Reconstruction of Neuronal Signals 
	In-Network-Processing
	Distributed Processing / In-Network Processing
	Distributed Processing / In-Network Processing
	Distributed kernel-based regression
	Distributed kernel-based regression
	Distributed Consensus-Based Kalman Filtering (DCKF)
	Distributed Precoding
	Distributed consensus-based estimation 
	Information Bottleneck
	Information Bottleneck Method
	Information Bottleneck Method
	Information Bottleneck Method
	Information Bottleneck Method - Receiver
	Low Latency, Short Packages
	�
	Project Goal
	PHY – Channel coding for short packages
	PHY - Latency optimized SDR Baseband Implementation
	Demonstrator: Transmodul line of a packing machine
	Publications (abstract)
	Foliennummer 34

