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Challenge: detect previously unencountered problems in
VNFs using network and performance metrics
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Example VNF: virtualized firewall

Data flowing from the sources to the destinations
Additional traffic between internet and destinations
Firewalls filtering traffic from source to one of the
destinations
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e Anomaly used for testing: memory leak
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e Dataset of known good operation

e No actual anomalies are used during the training process

e Available methods: clustering, dimensionality reduction /  femrsupenvised
sparsity constraints
—  Measure of similarity required

e Problem: Heterogeneity of data, multiple scales
— Normalization required

e Normalization via parametric and nonparametric

statistical approaches
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e Dimensionality reduction via Autoencoders
e Autoencoders are replicating artificial neural networks

Target

Autoencoder

Layer

e Both current value and difference to last value used as
features
— 14 features in the example setup

e Hyperparameters: number of layers / layer sizes,
activation function, learning rate during training
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e Measure of similarity: Euclidean distance

e Autoencoder is trained to best approximate its input by
its output in the Euclidean distance over the training data

e Measure of normality: Euclidean distance of output of Autoencoder
autoencoder to its input

e |[f this distance is above a certain threshold, a datapoint is
considered anomalous by the autoencoder

e Hyperparameter: anomaly threshold

e Use an additional validation dataset to adjust the
anomaly threshold until the number of false positives
reaches a desirable level



Introduction

Intelligence
Semi-supervised
learning

Autoencoder

Evaluation




Ensembles .m

e Use more than one autoencoder in order to capture

Introduction

different characteristics of the data

Intelligence

Semi-supervised
learning

Autoencoder
Ensembles

Evaluation

Intelligent Networks Al-driven Malfunction Detection 12/16



Ensembles =8

e Use more than one autoencoder in order to capture

Introduction

different characteristics of the data

Intelligence
e Different autoencoders governed by different e
hyperparameters Autoencoder

Ensembles

Evaluation

Intelligent Networks Al-driven Malfunction Detection 12/16



Ensembles
I

e Use more than one autoencoder in order to capture
different characteristics of the data

e Different autoencoders governed by different
hyperparameters

e Allows for diversity in sparsity, nonlinearity, etc.

Intelligent Networks Al-driven Malfunction Detection

Introduction

Intelligence

Semi-supervised
learning

Autoencoder
Ensembles

Evaluation

12/16



Ensembles
I

e Use more than one autoencoder in order to capture
different characteristics of the data

e Different autoencoders governed by different
hyperparameters

e Allows for diversity in sparsity, nonlinearity, etc.

e [n the test scenario: three to seven layers, central layer
sizes from two to eight neurons, tanh and ReLU activation
functions, total of 216 autoencoders

Intelligent Networks Al-driven Malfunction Detection

I

Introduction

Intelligence

Semi-supervised
learning

Autoencoder
Ensembles

Evaluation

12/16



Ensembles ' F[I

e Use more than one autoencoder in order to capture
different characteristics of the data

e Different autoencoders governed by different
hyperparameters

e Allows for diversity in sparsity, nonlinearity, etc.

e |n the test scenario: three to seven layers, central layer
sizes from two to eight neurons, tanh and ReLU activation
functions, total of 216 autoencoders

e Vote among autoencoders: a datapoint is considered
normal if enough of the autoencoders consider the
datapoint normal; otherwise, it is considered anomalous
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e Significant generalization performance
e Most of the autoencoders converge very well on the
validation dataset

Results

0 100 200 300 400 500

e 80.4% detection rate vs. 0.7% false positives
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