

An Al-driven Malfunction Detection Concept for NFV Instances in 5G*

Julian AhrensMathias StrufeLia AhrensHans D. Schotten

May 17, 2018

^{*}This work was supported by the European Union's Horizon 2020 Programme under the 5G-PPP project: Framework for Self-Organized Network Management in Virtualized and Software Defined Networks (SELF-NET) with Grant no. H2020-ICT-2014-2/671672.

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Introduction

Main Problem

Introduction

Main Problem

Example Setup

Intelligence

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Challenge: detect previously unencountered problems in VNFs using network and performance metrics

Introduction

Main Problem

Example Setup

Intelligence

Introduction
Main Problem
Example Setup
Intelligence

Introduction

Main Problem

Example Setup

Intelligence

• Example VNF: virtualized firewall

Introduction Main Problem Example Setup Intelligence Evaluation

- Example VNF: virtualized firewall
- Data flowing from the sources to the destinations

- Example VNF: virtualized firewall
- Data flowing from the sources to the destinations
- Additional traffic between internet and destinations

Introduction Main Problem Example Setup Intelligence Evaluation

- Example VNF: virtualized firewall
- Data flowing from the sources to the destinations
- Additional traffic between internet and destinations
- Firewalls filtering traffic from source to one of the destinations

Introduction Main Problem Example Setup Intelligence Evaluation

Introduction

Main Problem

Example Setup

Intelligence

• Features: CPU utilization, memory utilization, HDD utilization, network traffic in and out, each on two interfaces

Introduction Main Problem Example Setup Intelligence Evaluation

- Features: CPU utilization, memory utilization, HDD utilization, network traffic in and out, each on two interfaces
 - \rightarrow seven features

Introduction Main Problem Example Setup Intelligence Evaluation

- Features: CPU utilization, memory utilization, HDD utilization, network traffic in and out, each on two interfaces
 - \rightarrow seven features
- Anomaly used for testing: memory leak

Introduction

Intelligence

Semi-supervised learning Autoencoder Ensembles

Evaluation

Intelligence

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

• Dataset of known good operation

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Dataset of known good operation
- No actual anomalies are used during the training process

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Dataset of known good operation
- No actual anomalies are used during the training process
- Available methods: clustering, dimensionality reduction / sparsity constraints

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Dataset of known good operation
- No actual anomalies are used during the training process
- Available methods: clustering, dimensionality reduction / sparsity constraints
 - \rightarrow Measure of similarity required

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Dataset of known good operation
- No actual anomalies are used during the training process
- Available methods: clustering, dimensionality reduction / sparsity constraints
 - \rightarrow Measure of similarity required
- Problem: Heterogeneity of data, multiple scales

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Dataset of known good operation
- No actual anomalies are used during the training process
- Available methods: clustering, dimensionality reduction / sparsity constraints
 - \rightarrow Measure of similarity required
- Problem: Heterogeneity of data, multiple scales
 - \rightarrow Normalization required

Intelligent Networks

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Dataset of known good operation
- No actual anomalies are used during the training process
- Available methods: clustering, dimensionality reduction / sparsity constraints
 - \rightarrow Measure of similarity required
- Problem: Heterogeneity of data, multiple scales
 - \rightarrow Normalization required
- Normalization via parametric and nonparametric statistical approaches

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

• Dimensionality reduction via Autoencoders

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Dimensionality reduction via Autoencoders
- Autoencoders are replicating artificial neural networks

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Dimensionality reduction via Autoencoders
- Autoencoders are replicating artificial neural networks

			1.1			•	
r	זלר	<u>`</u> ∩'	n	10	^†	10	۱n
۰.	ICI	0	u 1	u v	- 6	10	

Intelligence
Semi-supervised
learning

Autoencoder

Ensembles

- Dimensionality reduction via Autoencoders
- Autoencoders are replicating artificial neural networks

Intro	duo	tion.	
1110	auc	-1011	

Intelligence Semi-supervised learning

Autoencoder

Ensembles

Evaluation

 Both current value and difference to last value used as features

- Dimensionality reduction via Autoencoders
- Autoencoders are replicating artificial neural networks

					1			. •			
I	ľ	٦	t١	rc	nd	ш	C	tι	\cap	n	
-			~		~~~	~	\sim	U 1	\sim		

Intelligence Semi-supervised

learning

Autoencoder

Ensembles

- Both current value and difference to last value used as features
 - \rightarrow 14 features in the example setup

- Dimensionality reduction via Autoencoders
- Autoencoders are replicating artificial neural networks

lr	۱t	rc)d	u	CI	tι	0	n	

Intelligence Semi-supervised

learning

Autoencoder

Ensembles

- Both current value and difference to last value used as features
 - \rightarrow 14 features in the example setup
- Hyperparameters: number of layers / layer sizes, activation function, learning rate during training

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

• Measure of similarity: Euclidean distance

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Measure of similarity: Euclidean distance
- Autoencoder is trained to best approximate its input by its output in the Euclidean distance over the training data

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Measure of similarity: Euclidean distance
- Autoencoder is trained to best approximate its input by its output in the Euclidean distance over the training data
- Measure of normality: Euclidean distance of output of autoencoder to its input

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Measure of similarity: Euclidean distance
- Autoencoder is trained to best approximate its input by its output in the Euclidean distance over the training data
- Measure of normality: Euclidean distance of output of autoencoder to its input
- If this distance is above a certain threshold, a datapoint is considered anomalous by the autoencoder

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Measure of similarity: Euclidean distance
- Autoencoder is trained to best approximate its input by its output in the Euclidean distance over the training data
- Measure of normality: Euclidean distance of output of autoencoder to its input
- If this distance is above a certain threshold, a datapoint is considered anomalous by the autoencoder
- Hyperparameter: anomaly threshold

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Measure of similarity: Euclidean distance
- Autoencoder is trained to best approximate its input by its output in the Euclidean distance over the training data
- Measure of normality: Euclidean distance of output of autoencoder to its input
- If this distance is above a certain threshold, a datapoint is considered anomalous by the autoencoder
- Hyperparameter: anomaly threshold
- Use an additional validation dataset to adjust the anomaly threshold until the number of false positives reaches a desirable level

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

Introduction

Intelligence Semi-supervised

learning

Autoencoder

Ensembles

• Use more than one autoencoder in order to capture different characteristics of the data

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Use more than one autoencoder in order to capture different characteristics of the data
- Different autoencoders governed by different hyperparameters

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

- Use more than one autoencoder in order to capture different characteristics of the data
- Different autoencoders governed by different hyperparameters
- Allows for diversity in sparsity, nonlinearity, etc.

Introduction

Intelligence

Semi-supervised learning

Autoencoder

Ensembles

- Use more than one autoencoder in order to capture different characteristics of the data
- Different autoencoders governed by different hyperparameters
- Allows for diversity in sparsity, nonlinearity, etc.
- In the test scenario: three to seven layers, central layer sizes from two to eight neurons, tanh and ReLU activation functions, total of 216 autoencoders

ntro	du	ctio	n
1101 0	0.01	0010	

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

- Use more than one autoencoder in order to capture different characteristics of the data
- Different autoencoders governed by different hyperparameters
- Allows for diversity in sparsity, nonlinearity, etc.
- In the test scenario: three to seven layers, central layer sizes from two to eight neurons, tanh and ReLU activation functions, total of 216 autoencoders
- Vote among autoencoders: a datapoint is considered normal if enough of the autoencoders consider the datapoint normal; otherwise, it is considered anomalous

	- 10	~	Ы		~	41	~	-
E L	I I	()	(]	U	(.		()	E 1
	÷ 1	\sim	\sim	~	~	~ -	\sim	

Intelligence

Semi-supervised

learning Autoencoder

Ensembles

Introduction

Intelligence

Evaluation

Results

Introduction

Intelligence

Evaluation

• Significant generalization performance

Introduction

Intelligence

Evaluation

- Significant generalization performance
- Most of the autoencoders converge very well on the validation dataset

Intelligence

Evaluation

- Significant generalization performance
- Most of the autoencoders converge very well on the validation dataset

Introduction

Intelligence

Evaluation

Introduction

Intelligence

Evaluation Results

- Significant generalization performance
- Most of the autoencoders converge very well on the validation dataset

• 80.4% detection rate vs. 0.7% false positives

Questions?

Thank you!