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Challenge: detect previously unencountered problems in

VNFs using network and performance metrics
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• Example VNF: virtualized firewall

• Data flowing from the sources to the destinations

• Additional traffic between internet and destinations

• Firewalls filtering traffic from source to one of the

destinations
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• Features: CPU utilization, memory utilization, HDD

utilization, network traffic in and out, each on two

interfaces

Ñ seven features

• Anomaly used for testing: memory leak
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• Dataset of known good operation

• No actual anomalies are used during the training process

• Available methods: clustering, dimensionality reduction /

sparsity constraints

Ñ Measure of similarity required

• Problem: Heterogeneity of data, multiple scales

Ñ Normalization required

• Normalization via parametric and nonparametric

statistical approaches
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• Dimensionality reduction via Autoencoders

• Autoencoders are replicating artificial neural networks

• Both current value and difference to last value used as

features

Ñ 14 features in the example setup

• Hyperparameters: number of layers / layer sizes,

activation function, learning rate during training
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• Measure of similarity: Euclidean distance

• Autoencoder is trained to best approximate its input by

its output in the Euclidean distance over the training data

• Measure of normality: Euclidean distance of output of

autoencoder to its input

• If this distance is above a certain threshold, a datapoint is

considered anomalous by the autoencoder

• Hyperparameter: anomaly threshold

• Use an additional validation dataset to adjust the

anomaly threshold until the number of false positives

reaches a desirable level
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• Use more than one autoencoder in order to capture

different characteristics of the data

• Different autoencoders governed by different

hyperparameters

• Allows for diversity in sparsity, nonlinearity, etc.

• In the test scenario: three to seven layers, central layer

sizes from two to eight neurons, tanh and ReLU activation

functions, total of 216 autoencoders

• Vote among autoencoders: a datapoint is considered

normal if enough of the autoencoders consider the

datapoint normal; otherwise, it is considered anomalous
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• Significant generalization performance

• Most of the autoencoders converge very well on the

validation dataset
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• 80.4% detection rate vs. 0.7% false positives
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