#### **NOKIA** Bell Labs

# Addressing 5G Network Management Challenges with Machine Learning

23. ITG Fachtagung Mobilkommunikation, 17.5.2018

<u>Henning Sanneck</u>, Christian Mannweiler, Janne Ali-Tolppa, Levente Bodrog, Szilard Kocsis, Benedek Schultz Nokia Bell Labs Research

# 5G Network Management Addressing the challenges





# Cognition & Self-Organization

# applied to infrastructure networks?

Cellular macro network

- Tightly planned, infrequent physical topology changes, automated operation
- Single operator
- Single vendor equipment per OAM domain





5G Cellular Heterogeneous Network

- Some parts only coarsely planned, frequent virtual topology changes, highly automated operation
- Multi-tenant (shared infra)
- Multi-vendor per domain

#### Ad-hoc / mesh network

- Uncoordinated deployment, frequent physical topology changes, autonomous operation
- Only node operator
- Open environment, standardized protocols between nodes

"Self-organization is a process where the organization (constraint, redundancy) of a system spontaneously increases, i.e., without this increase being controlled by the environment or an encompassing or otherwise external system." (F. Heylighen, Principia Cybernetica Web, 1997)



Building knowledge in silos is not sufficient  $\rightarrow$  sharing knowledge inside an operational domain and across different, related areas

Human

#### Machines vs. Humans

Fast number-crunching (e.g., multi-variate KPI data processing) Keeping a lot of historical information Executing lots of concurrent low-level tasks / decisions, etc.

Machine overriding human (potential erroneous actions / mis-configuration, easy to detect with the machine-level, fast, concurrent processing)
 Human overriding machine (still limited machine intelligence and limited / erroneous instrumentation, easy to detect with human intuition)

Using intuition to make complex decisions under uncertainty (e.g., "low level" root cause diagnosis; expressing high-level targets and tradeoffs)

#### Machines vs. Humans

#### **Challenges wrt. Machine intelligence**

- Data uncertainty / incompleteness / volatility / variability:
  - Cell level data (PM, FM, CM) provides only incomplete, system-internal view; mostly treated in isolation
  - Significant changes over time (new NE/cells, new SW releases, ...), different deployments
  - System-external information and human operator knowledge is decoupled
- Knowledge transfer from human to machine domain
  - Lack of systematic human-level knowledge management
- Technical applicability
  - Many different AI approaches with different capabilities / constraints
  - Considering analogies in other domains, e.g., rule generation in coordination / verification compared to firewall rules coming from intrusion detection





### 5G NM: functional architecture

Communication Service Mgmt. (eMBB, mMTC, cMTC)



# Different 5G use case requirements $\rightarrow$ slice characteristics $\rightarrow$ set of cognitive functions

|                        | SMF/Control<br>Plane Capacity | Mobility<br>Frequency | UPF/ Forwarding<br>Capacity | Latency<br>Challenge | Resiliency |
|------------------------|-------------------------------|-----------------------|-----------------------------|----------------------|------------|
| Smart<br>Meters        | MEDIUM                        | LOW                   | LOW                         | LOW                  | LOW        |
| Car to a               | HIGH                          | HIGH                  | LOW                         | HIGH                 | HIGH       |
| Fixed<br>Wireless      | LOW                           | LOW/None              | Ultra HIGH                  | MEDIUM               | MEDIUM     |
| Consumer 🗍<br>Mobility | MEDIUM                        | HIGH                  | MEDIUM                      | MEDIUM               | MEDIUM     |
| Industrial IoT         | LOW                           | LOW                   | HIGH                        | HIGH                 | HIGH       |

SMF: Session Management Function

UPF: User Plane Function



# Different 5G use case requirements $\rightarrow$ slice characteristics $\rightarrow$ set of cognitive functions

|  |                         | SMF/Control<br>Plane Capacity | Mobility<br>Frequency | UPF/ Forwarding<br>Capacity | Latency<br>Challenge | Resiliency<br>need |
|--|-------------------------|-------------------------------|-----------------------|-----------------------------|----------------------|--------------------|
|  | mMTC                    | MEDIUM                        | LOW                   | LOW                         | LOW                  | LOW                |
|  | cMTC /<br>high mobility | HIGH                          | HIGH                  | LOW                         | HIGH                 | HIGH               |
|  | eMBB /<br>no mobility   | LOW                           | LOW/None              | Ultra HIGH                  | MEDIUM               | MEDIUM             |
|  | eMBB                    | MEDIUM                        | HIGH                  | MEDIUM                      | MEDIUM               | MEDIUM             |
|  | cMTC /<br>low mobility  | LOW                           | LOW                   | HIGH                        | HIGH                 | HIGH               |

# Different 5G use case requirements $\rightarrow$ slice characteristics $\rightarrow$ set of cognitive functions

| Radio vs. Cloud<br>resources | SMF/Control<br>Plane Capacity | Mobility<br>Frequency | UPF/ Forwarding<br>Capacity | Latency<br>Challenge              | Resiliency<br>need |
|------------------------------|-------------------------------|-----------------------|-----------------------------|-----------------------------------|--------------------|
| mMTC                         |                               |                       |                             |                                   |                    |
| cMTC /<br>high mobility      |                               | ¢                     |                             | → Radio: Mult                     | i-cell coord &     |
| eMBB /<br>no mobility        | → Cloud                       | → Radio               | → Radio<br>&                | <ul> <li>→ Cloud: Edge</li> </ul> | /                  |
| eMBB                         |                               |                       | (Edge)<br>Cloud             | VNF resilier                      | icy                |
| cMTC /<br>low mobility       |                               |                       |                             | İ                                 |                    |

### Cognitive NM functions: inputs $\rightarrow$ ML algorithm / rules $\rightarrow$ outputs

| Examples for applicable ML algorithm                           |  |
|----------------------------------------------------------------|--|
| Metaheuristics (PSO*) / decision tree                          |  |
| Reinforcement learning (QL*)                                   |  |
| Reinforcement learning (QL*)                                   |  |
| Reinforcement learning; Graph Neural Nets                      |  |
| Topic Modeling $\rightarrow$ MLN* $\rightarrow$ Utility Theory |  |
| Metaheuristics (genetic algorithms)                            |  |
| Metaheuristics (harmony search)                                |  |
| n/a (rules)                                                    |  |
| Unsupervised learning (clustering)                             |  |
| n/a (rules)                                                    |  |
|                                                                |  |

\* PSO: Particle Swarm Optimization, QL: Q(uality) Learning, MLN: Markov Logic Networks

#### Example: anomaly detection and diagnosis – overview



#### Network Weather Report

# Overview of network state and diagnosis in spatial and temporal context





### Anomaly detection procedure

Context-aware learning of normal states, measuring anomalousness in diurnal behavior and correlation



#### Augmented diagnosis

Synergetic exploitation of human-machine capabilities for fast and efficient analysis



### Augmented diagnosis

Human

1. Labels a few examples of the major expected anomaly groups

- 3. Expands and refines the labeling:
  - Labels the previously unlabeled anomalies in the expected groups
  - Labels the anomalies in the unexpected groups



### Use Case Example from a Major Operator

• Augmented learning → new cluster of intra- and inter-eNB Handover problems (distinct classes of anomalies that had not been discovered / analyzed yet)



Addressing 5G Network Management Challenges with Machine Learning Conclusions

- 5G Network complexity (ultra dense, cloudified, multi-service / -tenant) imposes new operability challenges
  - Functional:
    - per service- / tenant- instrumentation and *dynamic* operation (multiplicity of varying *virtual* network configurations)
    - data: higher resolution of measurements; new external sources / context
    - higher degree of autonomy in management
  - Architectural:
    - new building blocks related to slicing management
    - higher degree of distribution, cooperation / coordination and abstraction
- Cognitive NM functions
  - Shield the complexity of physical and virtual network functions from higher layers
     →balancing human and machine decision making

- Are intra- / inter-slice-aware; sets of CFs are defined per slice type
- Enable the management of diverse service types in diverse network scenarios

# Addressing 5G Network Management Challenges with Machine Learning Conclusions

- Machine Learning: key enabler to realized Cognitive NM functions  $\rightarrow$  approach:
  - Matching of key use case characteristics with technology capabilities ightarrow selection
  - Anomaly Detection / Diagnosis
    - Holistic PM/FM/CM analysis: leverage the potential of the data, by comprehensive analysis, combine network data with context data
      - $\rightarrow$  high quality detection + basic diagnosis (unsupervised learning)
    - Motivate Network Operations Experts to combine their knowledge with the machine-level  $\rightarrow$  (semi-)supervised learning (augmented diagnosis)

#### Research challenges

- 5G URLLC management: instrumentation, prognostic diagnosis
- Cognitive Function placement
- Slice management (incl. knowledge sharing & isolation)
- Management of interworking legacy net(s), 5G (private / public)





### SON + ML = Cognitive Network Management functions

|            | SON                                                                                                                  | Cognitive Network Management                                                                                                                                                                                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input data | Structured data; rel. Low spatial and temporal resolution                                                            | Structured and unstructured data; both low and high spatial and temporal resolution (real-time, location-annotated) -> exploit available data to the max; be flexible / robust wrt. the data availability / quality                                                    |
| Analysis   | Simple feature extraction (fixed thresholds on raw KPIs)                                                             | (Pre-processing of unstructured data)<br>Advanced feature extraction ( <b>training</b> based on KPI distributions) $\rightarrow$ no<br>configuration of thresholds, deploy $\rightarrow$ train $\rightarrow$ operate                                                   |
| Diagnosis  | Static: fixed algorithm / ruleset<br>(adaptation time cycle: NE SW<br>update interval: ~months)                      | Dynamic: probabilistic <b>reasoning &amp; learning</b> (adaptation time cycle: rule update interval: ~hours) -> fast, autonomic adaptation to specific deployment situation                                                                                            |
| Actions    | Single step, simple actions<br>(sometimes circumventing the<br>problem rather than solving it,<br>e.g., cell resets) | Multiple step action <b>planning</b> , considering utility; smarter, fine granular actions → <i>smarter automated actions taking into account context (cost)</i>                                                                                                       |
| Management | Technical policies                                                                                                   | Business-level policies (operator objectives / "intent") $\rightarrow$ automatically derived technical policies; high-level feedback for trust-building (verification)                                                                                                 |
| Use cases  | Simple "replacing" (OPEX-<br>improving, e.g., ANR) and "new"<br>(quality-improving, e.g.,<br>MRO/MLB) features       | Also complex "new" (e.g., Cell Anomaly Detection), "Integrating"<br>(Coordination, Verification) and "Supporting" (e.g., Cell Degradation Diagnosis,<br>tightly integrated with human-level workflows) features $\rightarrow$ covering a wide(r)<br>range of use cases |

# Example: Cell anomaly detection and diagnosis – ML Algorithms

| Cognitive NM Function                                | Examples for applicable ML algorithm                                                                                  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Input selection                                      | Genetic algorithms, PCA                                                                                               |
| Multi-dimensional non-normally distributed profiling | Clustering: k-NN, SOM, GNG                                                                                            |
| Anomaly level calculation                            | Multi-dimensional probabilistic distributions                                                                         |
| Anomaly event aggregation                            | DBSCAN                                                                                                                |
| Diagnosis                                            | Decision theory, rulebases, different<br>distance measures: Mahalanobis, Kullback-<br>Leibler divergence or Hellinger |
| Augmented learning                                   | Active learning, DBSCAN, k-NN                                                                                         |