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5G Network Management
Addressing the challenges
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Orgénlzatlon

Cellular macro network
 Tightly planned, infrequent physical
topology changes, automated operation
* Single operator ‘
* Single vendor equipment per OAM domain '

5G Cellular Heterogeneous Network Ad-hoc / mesh network
» Some parts only coarsely planned, * Uncoordinated deployment,
frequent virtual topology changes, frequent physical topology
highly automated operation changes, autonomous operation
* Multi-tenant (shared infra) * Only node operator
e Multi-vendor per domain * Open environment, standardized
protocols between nodes
“Self-organization is a process where the organization
(constraint, redundancy) of a system spontaneously
increases, i.e., without this increase being controlled by
the environment or an encompassing or otherwise external
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Cognition

Human Insights / Context,
Labeling

Knowledge

(trained
model &
context)

Machine , Insights” from
network data and context
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»Cognitive Functions®: inputs > ML algorithm / rules - outputs
» Gaining machine-level insights from data

Combining machine-level insights with human insights
 Closed-loop Cognitive Functions (for specific, frequent
tasks)
* Linking to human-level workflows through open-loop
functions (for other, more complex tasks)

Cognition is ,,the brain“ of the future mobile network business

(design, build/commission, operate, de-commission)

Building knowledge in silos is not sufficient
- sharing knowledge inside an operational domain and across
different, related areas
NOKIA Bell Labs



Machines vs. Humans

AUHINE

Machine overriding human (potential erroneous actions / mis-configuration,
easy to detect with the machine-level, fast, concurrent processing)

Human overriding machine (still limited machine intelligence and limited /
erroneous instrumentation, easy to detect with human intuition)

AR
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Machines vs. Humans

Challenges wrt. Machine intelligence
C Data uncertainty / incompleteness / volatility / variability:

: - Cell level data (PM, FM, CM) provides only incomplete, system-internal view;
mostly treated in isolation
/ - Significant changes over time (new NE/cells, new SW releases, ...), different !

deployments
- System-external information and human operator knowledge is decoupled
» Knowledge transfer from human to machine domain
- Lack of systematic human-level knowledge management
U« * Technical applicability
- Many different Al approaches with different capabilities / constraints

- Considering analogies in other domains, e.g., rule generation in
coordination / verification compared to firewall rules coming from
intrusion detection
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5G Network Management
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5G NM: functional architecture
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Anomaly Detection > Diagnosis = Healing action

Scaling

Load balancing / traffic steering
Scaling in/out, down/up

Coverage and Capacity Optimization

Mobility robustness (MRO)

Anomaly Detection > Diagnosis >
Healing

Anomaly Detection > Diagnosis = l J

Healing

Neighbour relationship setup (ANR)
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Different 5G use case requirements - slice characteristics = set of cognitive

functions
SMF/Control Mobility  ||UPF/ Forwarding || Latency Resiliency
Plane Capacity Frequency Capacity Challenge need

Smart
Vetors MEDIUM LOW LOW LOW LOW
Car to gﬂ
Car 2 HIGH HIGH LOW HIGH HIGH
Fixed
Foni LOW LOW/None | Ultra HIGH MEDIUM MEDIUM
Consumer
Mobility MEDIUM HIGH MEDIUM MEDIUM MEDIUM
Industrial
neustrs LOW LOW HIGH HIGH HIGH

SMF: Session Management Function
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UPF: User Plane Function
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Different 5G use case requirements - slice characteristics = set of cognitive

functions
SMF/Control Mobility  ||UPF/ Forwarding || Latency Resiliency
Plane Capacity Frequency Capacity Challenge need

mMTC MEDIUM LOW LOW LOW LOW
Mre/ HIGH HIGH LOW HIGH HIGH
high mobility
cMBE /- Low LOW/None | Ultra HIGH MEDIUM || MEDIUM
no mobility
eMBB MEDIUM HIGH MEDIUM MEDIUM MEDIUM
cMTC /
low mobility LOW LOW HIGH HIGH HIGH
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Different 5G use case requirements - slice characteristics = set of cognitive
functions

> Radio vs. Cloud SMF/Control Mobility UPF/ Forwarding Latency Resiliency
resources Plane Capacity || Frequency Capacity Challenge need
mMTC
cMTC /
high mobility I | ~> Radio: Multi-cell coord. &
eMBB / - > Cloud > Radio - Radio connectivity
no mobility | | & |~ Cloud: Edge Cloud,
(Edge) VNF resiliency
eMBB Cloud
cMTC /
low mobility

11 © 2018 Nokia NOKIA Rell Labs



Cognitive NM functions: inputs = ML algorithm / rules = outputs

Cognitive NM Function

Examples for applicable ML algorithm

Load balancing / traffic steering

Metaheuristics (PSO*) / decision tree

Coverage and Capacity Optimization

Reinforcement learning (QL*)

Mobility robustness (MRO)

Reinforcement learning (QL*)

Scaling in/out, down/up

Reinforcement learning; Graph Neural Nets

Anomaly Detection - Diagnosis - Healing

Topic Modeling > MLN* - Utility Theory

Network Function Chaining

Metaheuristics (genetic algorithms)

LCM / (re-)configuration, (re-)placement

Metaheuristics (harmony search)

Neighbour relationship setup (ANR)

n/a (rules)

Resource ID allocation (beam/cell ID/RS)

Unsupervised learning (clustering)

OAM connectivity / interface setup

n/a (rules)
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* PSO: Particle Swarm Optimization, QL: Q(uality) Learning, MLN: Markov Logic Networks



Example: anomaly detection and diagnosis — overview
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Network Weather Report
Overview of network state and diagnosis in spatial and temporal context

Self-optimizing network through Artificial Intelligence driven KPI analytics NOKIA Bell Labs

Manage deployment

Network weather report Anomaly diagnosis
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Anomaly detection procedure
Context-aware learning of normal states, measuring anomalousness in diurnal
behavior and correlation

Anomaly values
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Augmented diagnosis
Synergetic exploitation of human-machine capabilities for fast and efficient

analysis
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Augmented diagnosis
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Use Case Example from a Major Operator

« Augmented learning = new cluster of intra- and inter-eNB Handover problems
(distinct classes of anomalies that had not been discovered / analyzed yet)
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Addressing 5G Network Management Challenges with Machine Learning
Conclusions

* 5G Network complexity (ultra dense, cloudified, multi-service / -tenant) imposes new
operability challenges
* Functional:
* per service- / tenant- instrumentation and dynamic operation
(multiplicity of varying virtua/network configurations)
« data: higher resolution of measurements; new external sources / context
* higher degree of autonomy in management
* Architectural:
* new building blocks related to slicing management
* higher degree of distribution, cooperation / coordination and abstraction
 Cognitive NM functions
* Shield the complexity of physical and virtual network functions from higher layers
—>balancing human and machine decision making
* Are intra- / inter-slice-aware; sets of CFs are defined per slice type

 Enable the management of diverse service types in diverse network scenarios
19 © 2018 Nokia NOKIA Bell Labs



Addressing 5G Network Management Challenges with Machine Learning
Conclusions

« Machine Learning: key enabler to realized Cognitive NM functions - approach:
« Matching of key use case characteristics with technology capabilities = selection
« Anomaly Detection / Diagnosis
* Holistic PM/FM/CM analysis: leverage the potential of the data, by comprehensive
analysis, combine network data with context data
- high quality detection + basic diagnosis (unsupervised learning)
» Motivate Network Operations Experts to combine their knowledge with the
machine-level - (semi-)supervised learning (augmented diagnosis)

» Research challenges
* 5G URLLC management: instrumentation, prognostic diagnosis
 Cognitive Function placement
* Slice management (incl. knowledge sharing & isolation)
« Management of interworking legacy net(s), 5G TACNEL
(private / public)
20 © 2018 Nokia NOKIA Bell Labs
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SON + ML = Cognitive Network Management functions

________[soN | Cognitive Network Management

Input data Structured data; rel. Low spatial
and temporal resolution

Analysis Simple feature extraction (fixed
thresholds on raw KPIs)

Diagnosis Static: fixed algorithm / ruleset
(adaptation time cycle: NE SW
update interval: ~months)

Actions Single step, simple actions
(sometimes circumventing the
problem rather than solving it,
e.g., cell resets)

Management Technical policies

Use cases Simple ,replacing” (OPEX-
improving, e.g., ANR) and ,,new*
(quality-improving, e.g.,
MRO/MLB) features
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Structured and unstructured data; both low and high spatial and temporal
resolution (real-time, location-annotated) = exploit available data to the
max; be flexible / robust wrt. the data availability / quality

(Pre-processing of unstructured data)
Advanced feature extraction (training based on KPI distributions) 2 no
configuration of thresholds, deploy 2 train 2 operate

Dynamic: probabilistic reasoning & learning (adaptation time cycle: rule
update interval: ~hours) 2 fast, autonomic adaptation to specific
deployment situation

Multiple step action planning, considering utility; smarter, fine granular
actions = smarter automated actions taking into account context (cost)

Business-level policies (operator objectives / “intent”) > automatically
derived technical policies; high-level feedback for trust-building (verification)

Also complex ,,new” (e.g., Cell Anomaly Detection), ,Integrating”
(Coordination, Verification) and ,Supporting” (e.g., Cell Degradation Diagnosis,
tightly integrated with human-level workflows) features = covering a wide(r )
range of use cases

NOKIA Bell Labs



Example: Cell anomaly detection and diagnosis — ML Algorithms

Cognitive NM Function Examples for applicable ML algorithm

Input selection Genetic algorithms, PCA

Multi-dimensional non-normally | Clustering: k-NN, SOM, GNG
distributed profiling

Anomaly level calculation Multi-dimensional probabilistic distributions
Anomaly event aggregation DBSCAN
Diagnosis Decision theory, rulebases, different

distance measures: Mahalanobis, Kullback-
Leibler divergence or Hellinger

Augmented learning Active learning, DBSCAN, k-NN
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