UWB-based Single Reference Point Positioning System

Mathias Pelka, Swen Leugner, Marco Cimdins, Holger Schwegmann and Horst Hellbrück

May 8, 2017

- Positioning is used in industrial, medical and consumer applications.
 - Industrial applications: good monitoring, plant security.
 - Medical applications: fall detection, equipment monitoring.
 - Consumer applications: smart gadgets, keyfinder.
- New application emerge:

IIII CoSA

Autonomous driving.

▶ ...

- Positioning is used in industrial, medical and consumer applications.
 - Industrial applications: good monitoring, plant security.
 - Medical applications: fall detection, equipment monitoring.
 - Consumer applications: smart gadgets, keyfinder.
- New application emerge:

IIII CoSA

Autonomous driving.

▶ ...

- Global navigation satellite systems (GNSS) exists:
 - GPS (USA), GLONASS (Russia), GALILEO (Europe), Beidou (China).
- Signals from GNSS faces difficulties due to multipath, scattering or other effects.
- Obstacle penetration is impaired due to strong signal attenuation caused by distance.

- Global navigation satellite systems (GNSS) exists:
 - GPS (USA), GLONASS (Russia), GALILEO (Europe), Beidou (China).
- Signals from GNSS faces difficulties due to multipath, scattering or other effects.
- Obstacle penetration is impaired due to strong signal attenuation caused by distance.

Solutions for indoor application required.

- Manufactors for indoor positioning system / technologies:
 - Agilion, Decawave, Ekahau, Microchip, Nanotron, Ubisense,...
- Existing positioning systems require infrastructure, e.g. reference points.
 - Increases costs of positioning systems.
 - Position of the reference points is required.

- Manufactors for indoor positioning system / technologies:
 - Agilion, Decawave, Ekahau, Microchip, Nanotron, Ubisense,...
- Existing positioning systems require infrastructure, e.g. reference points.
 - Increases costs of positioning systems.
 - Position of the reference points is required.

 Our goal: Reduce the number of reference points to decrease cost and to ease deployment.

SHARF: Combines acoustic and UWB-based message exchange.1

¹Zubair et al.: SHARF: A Single Beacon Hybrid Acoustic and RF Indoor Localization Scheme

²Kumar et al.: Indoor Localization System for 2D Measurement in European UWB Band with Single Reference Position

³Leitinger et al.: Cognitive indoor positioning and tracking using multipath channel information III CoSA

- SHARF: Combines acoustic and UWB-based message exchange.¹
- Kumar et al. employs frequency-of-arrival.²

¹Zubair et al.: SHARF: A Single Beacon Hybrid Acoustic and RF Indoor Localization Scheme

²Kumar et al.: Indoor Localization System for 2D Measurement in European UWB Band with Single Reference Position

³Leitinger et al.: Cognitive indoor positioning and tracking using multipath channel information

- SHARF: Combines acoustic and UWB-based message exchange.¹
- Kumar et al. employs frequency-of-arrival.²
- Leitinger et al. exploits multi-path components of signals.³

¹Zubair et al.: SHARF: A Single Beacon Hybrid Acoustic and RF Indoor Localization Scheme

²Kumar et al.: Indoor Localization System for 2D Measurement in European UWB Band with Single Reference Position

³Leitinger et al.: Cognitive indoor positioning and tracking using multipath channel information

- SHARF: Combines acoustic and UWB-based message exchange.¹
- Kumar et al. employs frequency-of-arrival.²
- Leitinger et al. exploits multi-path components of signals.³

What are common approaches for indoor positioning using COTS products?

¹Zubair et al.: SHARF: A Single Beacon Hybrid Acoustic and RF Indoor Localization Scheme

²Kumar et al.: Indoor Localization System for 2D Measurement in European UWB Band with Single Reference Position

³Leitinger et al.: Cognitive indoor positioning and tracking using multipath channel information

Approach

Lateration

 Based on distance from reference points.

 Slow, no time synchronization is required.

Hyperbolic Lateration

Based on difference of distances.

 Fast, time synchronization is required.

Approach

Lateration

 Based on distance from reference points.

Hyperbolic Lateration

Based on difference of distances.

- Slow, no time synchronization is required.
- Fast, time synchronization is required.
 - How can we reduce the number of reference points required for lateration or hyperbolic lateration?

Approach

- Instead of using multiple reference points, we use multiple antennas in one entity.
- We place the antennas in the middle of a circle and create a single reference point.
- For lateration and hyperbolic lateration those antennas serves as virtual reference points.

Implementation

- We implemented the positioning system in our TinyTriSOS wireless sensor node.
- ► The DW1000 from Decawave performs ranging.
- Instead of multiple antennas, we use multiple TinyTriSOS nodes.

Implementation

- For hyperbolic lateration, the antennas needs to be synchronized.
- In our implementation synchronization is done via a common clock source.
- Position Calculation
 - For position estimation we employ a combination of Quasi-Linearizion and the Levenberg-Marquardt algorithm.
 - The Quasi-Linearization is a (approximative) closed form solution of the nonlinear positioning problem.
 - The Levenberg-Marquardt algorithm takes the solution of the Quasi-Linearization as a starting point and improves the solution.

Evaluation

- Evaluation was done in three steps.
 - 1. Theoretical Analysis
 - 2. Extensive simulations
 - 3. Evaluation

Theoretical Analysis

- A standard procedure for reference point based positioning systems is to investigate the geometry of the positioning problem⁴.
 - Geometry describes the number and placement of reference points.
- Different metrics exists
 - (Geometric / Position) Dilution of Precision
 - Cramer-Rao Lower Bound
 - Error propagation
- All of them are very similar and we investigated the Cramer-Rao Lower Bound of the problem.

$$C_{\mathbf{r}} \geq \mathbf{E}\left[\left(rac{\partial}{\partial r}\ln p\left(c|\mathbf{r}
ight)
ight)^{2}
ight]^{-1}$$

⁴Zhao et al.: 2D geometrical performance for localization algorithms from 3D perspective IIII CoSA Mathias Pelka Single Reference Point Positioning System

Theoretical Analysis

- The Cramer-Rao Lower Bound provides a lower bound for the variance of an estimator.
- Requires assumption of the type of noise along with the geometry of the problem.
 - ▶ For our analysis we assumed white Gaussian noise.
- The Cramer-Rao Lower Bound provides for each coordinate a matrix, therefore we calculate the trace of C_r:

$$\Delta \mathbf{r}_{c} = \operatorname{tr}(C_{\mathbf{r}}) = \sum_{i=1}^{n} c_{\mathbf{r},ii}$$

 In this case the Geometric Dilution of Precision (GDOP) and the Cramer-Rao Lower Bound is identical.

- ► For the simulation we define a target area of 10 m × 10 m with a grid of 0.25 m.
- ► Three antennas are equally distributed with radii
 - $a = \{0.1, 0.30, 0.55, 1.0\}$ m.

Simulation of the GDOP for a = 0.55 m, $\sigma = 0.1 \text{ m}$ and four antennas.

INCONSCIENCE

Mathias Pelka

We determine the positioning error
e as the Euclidean distance between true position r and estimate position r̂.

Simulation results for lateration with standard deviation $\sigma = 0.1 \text{ m}$, target area of $10 \text{ m} \times 10 \text{ m}$ and a grid of 0.25 m. All results in [m].

radius	0.10	0.30	0.55	1.00
mean GDOP	3.20	1.08	0.58	0.33
max GDOP	5.80	1.95	1.08	0.61
95 percentile ϵ	7.60	2.47	1.30	0.71

▶ With increasing radius *a* we expect a better accuracy.

• We repeated the simulation for hyperbolic lateration.

Simulation results for hyperbolic lateration with standard deviation $\sigma = 0.1 \text{ m}$, target area of $10 \text{ m} \times 10 \text{ m}$ and a grid of 0.25 m. All results in [m].

radius	0.10	0.30	0.55	1.00
mean GDOP max GDOP	> 10 > 10	> 10 > 10	> 10 > 10	3.68 > 10
95 percentile ϵ	> 10	> 10	> 10	> 10

• We repeated the simulation for hyperbolic lateration.

Simulation results for hyperbolic lateration with standard deviation $\sigma = 0.1 \text{ m}$, target area of $10 \text{ m} \times 10 \text{ m}$ and a grid of 0.25 m. All results in [m].

radius	0.10	0.30	0.55	1.00
mean GDOP	> 10	> 10	> 10	3.68
max GDOP	> 10	> 10	> 10	> 10
95 percentile ϵ	> 10	> 10	> 10	> 10

Does not work.

Good Geometry

Bad Geometry

Good Geometry

Bad Geometry

In our case, we are always dealing with a bad geometry.

Evaluation Results

- \blacktriangleright The size of the target area is 4 m \times 4 m with a grid of 0.5 m.
- For each position of the grid we tested three radii
 - $a = \{0.1, 0.55, 1.0\}$ m.

Evaluation Results

.

IIII CoSA

Simulation (S) and evaluation (E) results for the target area. All results in [m].

radius [m]	0.10	0.55	1.00
95 percentile lat. E	1.99	0.95	0.56
95 percentile lat. S	8.17	1.31	0.74
95 percentile hyp. lat. E	> 10	> 10	> 10
95 percentile hyp. lat. S	> 10	> 10	> 10

- Lateration works quite well.
- Hyperbolic lateration does not work.

Conclusion

We have presented an UWB-based single reference point positioning system using multiple antennas.

- The antennas serve as additional virtual reference points for lateration and hyperbolic lateration.
- The positioning error in 95 percent of all measurements for lateration (in our setup) is below 0.56 m.

I CoSA