112 eCall – Lessons Learnt and Next Steps

Ralf Weber
Disclaimer

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm.

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

QUALCOMM Incorporated
5775 Morehouse Drive
San Diego, CA 92121-1714

Copyright © 2016 QUALCOMM Incorporated.
All rights reserved.
Outline

- Introduction
- Lessons Learnt
 - Example: AMR-WB Performance
- Certification Framework
- eCall Evolution
- Conclusion
Introduction
Introduction

Motivation
eCall Transmission Chain

How eCall works?

Legend:
- PSAP/112: Public Safety Answering Point 112 (PSAP)
- MSD: Minimum set of data
- VMS: Variable Message Sign
- Traffic Info
- Rescue Intervention
- Data connection
- Voice connection
Lessons Learnt

Example: AMR-WB Performance
Lessons Learnt

- **Expected performance**
 - **Average** MSD success rate should be >99%
 - **Average** MSD transmission time should be <4s

- **Issue investigation**
 - Failed MSD transmissions need careful investigation to isolate the root cause, e.g.
 - Network related issue?
 - PSAP configuration/implementaiton issue?
 - IVS integration/implementation issue?
 - In-band modem related issue?

- **Failure analysis guideline**
 - What is the failure symptom?
 - How often did it happen and at what call stage?
 - What was the test environment?
 - E.g. field test or lab?
 - What is the root cause?
 - Inspect available HLAP and audio logs and identify the potential entity that is responsible
 - Who could help to solve the issue?
 - E.g. PSAP vendor/operator, IVS vendor, test equipment vendor, car manufacturer, network operator

Most observed issue are due to wrong configuration or implementation/integration
eCall Performance with AMR-WB

Failure Symptom & Analysis

1. NW-A exhibits unexpected performance issues
 - Lower MSD success rate
 - Higher MSD transmission time

2. Root issue cause investigation
 - Resampling artifacts leading to misdetections of signal sign reversals, resulting in synchronization failures

3. Solution
 - Improvement of codec inversion detection (CID) algorithm
 - 3GPP adopted the new solution from Rel. 11.1 onwards

<table>
<thead>
<tr>
<th>Codec</th>
<th>%Succ</th>
<th>%Succ gt20s</th>
<th>avg MSD time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR-NB (NW-B)</td>
<td>100.0</td>
<td>100.0</td>
<td>3.6</td>
</tr>
<tr>
<td>AMR-WB (NW-B)</td>
<td>100.0</td>
<td>100.0</td>
<td>3.6</td>
</tr>
<tr>
<td>AMR-NB (NW-A)</td>
<td>100.0</td>
<td>100.0</td>
<td>3.2</td>
</tr>
<tr>
<td>AMR-WB (NW-A Region 1)</td>
<td>100.0</td>
<td>100.0</td>
<td>3.5</td>
</tr>
<tr>
<td>AMR-WB (NW-A Region 2)</td>
<td>87.1</td>
<td>76.7</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Increased MSD TX Time

No AMR-WB issues seen

Unsatisfactory NT MSD success rate
Validation challenges with new CID algorithm

1. Comparing legacy and new CID results with modified 3GPP simulator and post-processing of existing data showed promising results
 - See our presentation from 19th ITG/VDE Fachtagung “Mobilkommunikation”

2. Field test validation (Part 1)
 - Retested in critical regions with new IVS software builds
 - Unfortunately, NW-A had switched off AMR-WB for mobile to fixed-line calls
 • “It should have newer been switched on”

3. Field test validation (Part 2)
 - We had to employ a mobile PSAP to bypass the network configuration
 - Disadvantage: 2nd radio link with potential additional AMR-WB re-encoding
 • May lead to weaker performance compared to mobile to fixed-line connections
 - Conducted more than 6000 test calls
 • Employing all combinations of legacy and new CID on both IVS and PSAP side
 • Tested in critical areas with mobile PSAP in Nuremberg office as well as in same cell as IVS
 • Some tests had to be repeated due to network related issues in order to obtain reasonable confidence of the statistics
eCall Performance with AMR-WB (cont’d)

Validation result overview

<table>
<thead>
<tr>
<th>PSAP location</th>
<th>IVS CID</th>
<th>PSAP CID</th>
<th>#Calls</th>
<th>#Succ</th>
<th>%Succ</th>
<th>avg MSD time</th>
<th>stdev MSD time</th>
</tr>
</thead>
<tbody>
<tr>
<td>same cell</td>
<td>legacy</td>
<td>legacy</td>
<td>1118</td>
<td>1017</td>
<td>91.0</td>
<td>4.32</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>legacy</td>
<td>new</td>
<td>610</td>
<td>586</td>
<td>96.1</td>
<td>3.88</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>new</td>
<td>legacy</td>
<td>600</td>
<td>571</td>
<td>95.2</td>
<td>4.23</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>new</td>
<td>new</td>
<td>1240</td>
<td>1238</td>
<td>99.8</td>
<td>3.88</td>
<td>0.53</td>
</tr>
<tr>
<td>Nbg office</td>
<td>legacy</td>
<td>legacy</td>
<td>906</td>
<td>808</td>
<td>89.2</td>
<td>4.32</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>legacy</td>
<td>new</td>
<td>200</td>
<td>191</td>
<td>95.5</td>
<td>4.08</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>new</td>
<td>legacy</td>
<td>199</td>
<td>183</td>
<td>92.0</td>
<td>4.23</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>new</td>
<td>new</td>
<td>908</td>
<td>906</td>
<td>99.8</td>
<td>4.06</td>
<td>0.35</td>
</tr>
</tbody>
</table>

No significant difference between results from different PSAP locations
eCall Performance with AMR-WB (cont’d)

Failure Cases

- Legacy CID IVS + legacy CID PSAP

- New CID IVS + new CID PSAP

NW issues were regarded as non-relevant failures
Certification Framework
Certification Challenges

Why it is not so easy?

- Automotive industry is not familiar with the certification approach used in the telecommunication industry
 - Only used to follow car type-approval regulations

- Car-type approval regulations are so far self-contained and do not allow to inherit voluntary certification schemes
 - Mainly covering car safety related aspects (e.g. EMC, crash resistance)
 - So far no need to care about interoperability

- Voluntary certification schemes like GCF are hesitant to become part of a mandated car type-approval regulation
 - Claim to be in contrast with the ‘voluntary’ principle
 - However, 2G/3G NADs are already part of the eCall mandate

- Current focus of ERTICO’s certification framework initiative
 - Define boundary between regulated type-approval and voluntary certification
 - Consolidate tests from different standards and identify gaps
eCall System Elements

Embedded IVS device requires joint certification to ensure E2E functionality

- In-band Modem & HLAP
- 2G/3G Mobile Radio
- GNSS

- Antennae & Power Supply
- Crash Sensors
- HMI

- eCall-Flag Detection
- eCall Routing
- Transmission Quality

- In-band Modem & HLAP
- Application Features
- Operational Handling

? Certification TBD

✔ GCF Certification ✔ Car Type Approval ✔ Network Maintenance and Optimization
Certification Process Overview

Proposal for eCall developed within ERTICO

1. IVS manufacturer (request for certification)
 - Submit product
 - GCF certified module

2. ISO17025 accredited Test Lab (e.g. CETECOM)
 - Database of validated test cases
 - Validated test systems

3. Certification Body (e.g. ERTICO)
 - Authorization
 - List of certified terminals

4. Standards (CEN, 3GPP, etc.)
 - Submit certificate
eCall Evolution
Network Environment Evolution

- 2G/3G network separating speech and data transmission over CS and PS domains

All NW components separate speech and data over CS and PS domains
Network Environment Evolution

- 2G/3G network separating speech and data transmission over CS and PS domains

All NW components separate speech and data over CS and PS domains
Network Environment Evolution (cont’d)

- 2G/3G network separating speech and data transmission over CS and PS domains

PSTN combines speech with data through Voice-over-IP gateways (VoIP GW)
Network Environment Evolution (cont’d)

- 2G/3G network combining speech and data transmission over PS domains

MNO and PSTN combine speech with data through Voice-over-IP gateways (VoIP GW)
Network Environment Evolution (cont’d)

- 3.5G/4G networks can transport speech purely over PS domain through VoIP
- IVS devices require fallback to CS domain if networks do not support VoIP

End-to-end speech and data combination through Voice-over-IP gateways (VoIP GW)
eCall for Future Networks

- Recommended by ETSI STF 456
 - Use existing IMS Emergency Services (including multimedia)

- Requires only small enhancements to support eCall-specific functionality
- Provides end-to-end resource reservation and call prioritization
IMS eCall Prospects

- IMS eCall enables “Next Generation” eCall
 - Faster MSD transfer (during call-setup)
 - No muting of speech path necessary
 - More than 140 bytes could be exchanged
 - Allows 2 way data transmission
 - Extended data, e.g. regional/vehicle specific data, medical data, HD audio
 - Enhanced features for PSAPs, e.g. video, car instructions

- Seamless integration of warning, rescue and traffic management services

- Smartphone implementation (personal eCall)

- Interworking with other wireless networks (e.g. C-ITS, WiFi, NFC etc)

- New range of embedded and aftermarket devices employing
 - Medical equipment (e.g. defibrillators)
 - eHealth devices (e.g. patient monitoring)
 - Security devices (e.g. door/window lock/unlock, surveillance cams)
 - Monitoring devices (e.g. sensors for fires, flooding, earthquakes)
Conclusion
Conclusions

- Several field trials have proven that eCall performance is reliable enough for public safety services
- Nevertheless, the eCall transmission chain is complex and the dynamic network environments may lead to varying performance figures
- Careful investigations are needed to identify IVS, PSAP or network related performance issues
 - Example: AMR-WB performance issues required new CID algorithm
 - Improved MSD success rate
 - Reduced MSD transmission time

- A unified certification framework can ensure
 - Interoperability of devices
 - Reliable performance
 - Well defined test and validation procedures
 - Cost efficient development

- IMS eCall provides an evolution path for next generation networks
 - Additional multi-media applications allow to further improve emergency services
Thank You!

Questions?

Contact:
- Ralf Weber (rweber @ qualcomm.com)