

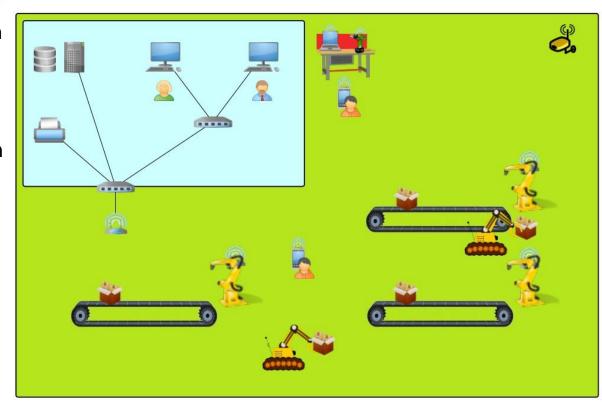
Localization of Objects in Cyber **Physical Production Systems for Industry 4.0 via Heterogeneous Camera Environments**

Daniel Fraunholz

(Daniel.Fraunholz@dfki.de)

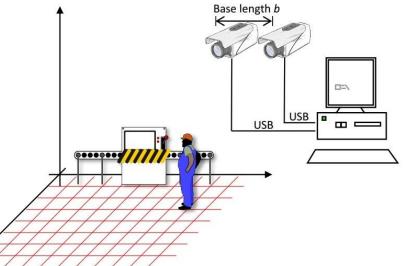
Deutsches Forschungszentrum für Künstliche Intelligenz

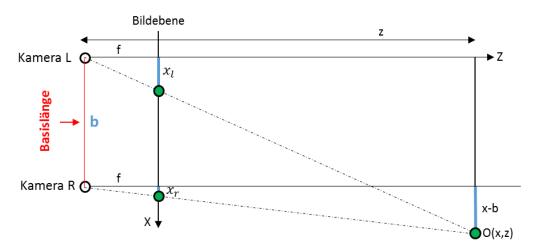
Inhalt


- 1. Einleitung
- 2. Konzept
- 3. Validierung
- 4. Ausblick
- 5. Zusammenfassung

Einleitung

- Industrie 4.0 steigert die Flexibilität der maschinellen Umgebung
- Maschinen werden mobiler und sind nicht zwangsweise ortsgebunden
- Mittels geeigneter Lokalisierungsmethoden sollen Unfälle vermieden werden

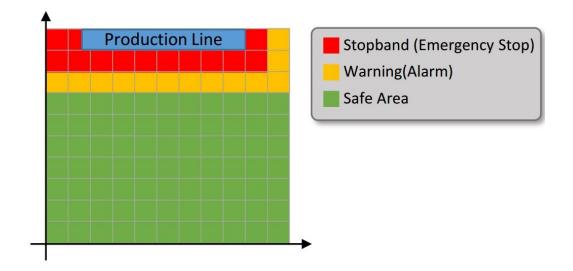

Konzept



 Zur Observation wird ein Stereo-Kamerasystem verwendet

 Grundfläche wird in ein x,y-Raster eingeteilt

• Basislänge b, Disparität d und Fokus f bestimmen die Objektposition O(x, y, z)


$$z = \frac{f \cdot b}{(x_1 - x_2)} = \frac{f \cdot b}{d}$$

Szenario

- Betrachtung einer sicherheitskritischen Produktionslinie
- Rasterkarte wird in drei Bereiche eingeteilt
 - Stopband
 - Warning
 - Save Area

 Warning und Stopband lösen entsprechende Schutzmechanismen aus

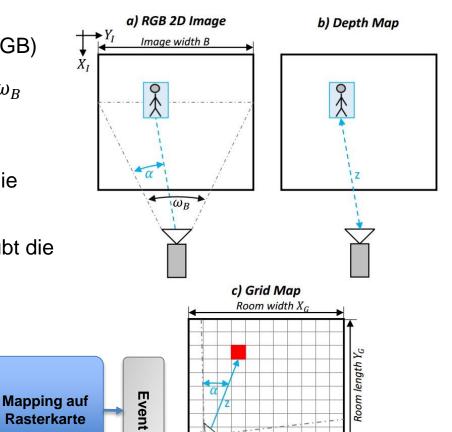
Validierung

- Jede Kamera erzeugt ein 2D Bild (RGB)
- Basierend auf dem Öffnungswinkel ω_{B} der Kamera wird der Objektwinkel a errechnet
- Mittels beider Kamerabilder erfolgt die Transformation in eine Tiefenkarte

Berechnung

von α

Ein Objekttracking Algorithmus erlaubt die Identifizierung von Personen


Berechnung

von z und

Erzeugung

der

Tiefenkarte

2D Bild

Kamera 1

2D Bild

Kamera 2

Rasterkarte

Testumgebung

Testszenario:

- Personenerkennung im Labor, Stopband wird durch den Tisch rechts markiert
- Berechnung der Distanz z und Abweichung zur realen Distanz

Stopband

Grün: Erkannte Person Rot: Bereich für Berechnungen

Ergebnisse (1/2)

Disparität in pixel	Errechnete Distanz in m	Gemessene Distanz in m	Fehler in %
14,20	1,76	1,43	23,67
11,95	3,43	4,91	30,00
10,40	4,59	3,22	52,56
8,88	5,72	5,71	0,20
7,03	7,09	7,40	4,08

- · Gemessene Werte weisen hohe Fehlervarianz auf
- Abweichungen bis circa 53 % möglich
- Keine zuverlässige Zuordnung der Objekte möglich

Ergebnisse (2/2)

- Identifizierte Ursachen:
 - Lichtverhältnisse sind nicht statisch und beeinflussen die Messergebnisse
 - Farbe und Muster des betrachteten Objektes haben einen Einfluss auf die Messung
- Abhilfen:
 - Erstellung einer definierten Testumgebung
 - Verbesserung der Genauigkeit durch Einbringung weitere Kameras in zusätzlichen spektralen Bereichen
 - Verbesserung und Optimierung der Signalverarbeitung

Ausblick

- 1. Verteilte Systeme
- 2. Erweiterter Spektralbereich
- 3. Verbesserte Algorithmen

Fazit

- 1. Bildbasierte Objektlokalisierung für I4.0
- 2. Erweiterbares System

Vielen Dank für Ihre Aufmerksamkeit

Daniel.Fraunholz@dfki.de

