A Token-Based MAC For Long-Distance IEEE802.11 Point-To-Point Links

Michael Rademacher
michael.rademacher@h-brs.de

Martin Chauchet
martin.chauchet@inf.h-brs.de

Karl Jonas
karl.jonas@h-brs.de

Hochschule Bonn-Rhein-Sieg

Mobilkomtagung, 11-12. May 2016, Osnabrück
A Different Technology for Broadband in Rural Areas

Commercial off-the-shelf (COTS) WiFi/802.11 transmitter and directional antennas

▶ Inexpensive (low CAPEX)
▶ Free-to-use band (low OPEX)
▶ Low energy consumption (low OPEX)
▶ Well developed and documented

Used in a controlled Multi-Radio Multi-Channel Wireless Mesh Network (WMN)\(^1\)

▶ Our main research fields:
 - Channel Allocation [1]
 - MAC-layer optimization [2–4]
 - Propagation modeling [5]

\(^1\)Keywords: WiFi-based Long Distance (WiLD) networks [6] and Coordinated Wireless Backhaul Networks (WBNs) [7].
The 802.11 MAC on Long-Distance Links

- 802.11 MAC-layer: CSMA/CA with a binary exponential back-off algorithm called Distributed Coordination Function (DCF)

DCF design assumptions:
- Contiguous stations in a cell
- Spatial restrictions of a few hundred meters

WiLD network topology:
- Point-to-Point links
- Link distances up to several kilometers

- Two paths in the research community (and in the industry):
 A Adapt and optimize the DCF for long-distance links
 B Replace the DCF with a new MAC-layer function
A. Adapt and Optimize the DCF for Long-Distance Links

2002 Timings need to be adapted [8]
2007 Increase ACK timeout, Slot time, SIFS and DIFS [6]
2010 Modeling of 802.11a long-distance links [9, 10]
2012 Propagation time factor is now part of the standard [11]
2015 Modeling and optimization of 802.11n links long-distance links [3]

Operation of the DCF with transmission of A to B. On top short distances, on the bottom increased timings on long-distance links.
B. Replace the DCF with a New MAC-layer Function

- Mainly TDMA approaches based on [12]
- Time slots:
 - Fixed or variable
 - Synchronization: tight (GPS) or loose
- Single wireless channel network
- Goal: Provide more spectrum for access

Overview of alternative MAC-layer approaches for WiLD networks, based on [13]

<table>
<thead>
<tr>
<th>Year</th>
<th>Approach</th>
<th>Channels</th>
<th>Topology</th>
<th>Design</th>
<th>Time</th>
<th>Slots</th>
<th>Link Type</th>
<th>QoS</th>
<th>Testbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>This Work</td>
<td>Multi</td>
<td>Arbitrary</td>
<td>Distr.</td>
<td>Loose</td>
<td>Static</td>
<td>PtP</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
WiLDToken - Motivation, Idea and Assumptions

- Focus on a single long-distance link in a network with non-interfering frequencies assigned (CA algorithm needed)
- Goals compared to an adapted DCF version [5]:
 - Increased throughput,
 - Less delay and jitter,
 - Better fairness and possibility to set a the up- and downlink ratio.

- Our token protocol operation in a nutshell (Station A and B):
 - A holds the token and transmits a specified amount of data.
 - When finished, or no data is present, A passes the token to B.
 - A switches in the receiving state, B transmits data.
- No back-off is needed
- There are no (protocol induced) collisions on the medium
WiLDToken - State Machine and Packet Exchange

- Data exchange phase (RX and TX states)
- Synchronisation phase (SYNC and WAIT states)
- Send limit (regulatory)
- Sync and Receive Timeout
- Token format: Exploit 802.11 subtype field for sync request, sync reply or token.
Methodology: WiLD Link Simulation in ns-3

- We use/extend ns-3 (v. 3.24)
- Two implementations:
 - The adapted DCF [3]
 - WiLDToken
- Goal: Re-use as many parts as possible
- Our NS-3 code is online: http://mc-lab.de/

- Simulation settings:
 - IEEE802.11n ad-hoc mode
 - 100 m to 50 km, P2P links, 5.2 GHz
 - Omni-antennas with EIRP of 53 dBm
 - 20 MHz, MCS 7, SGI -> Phy: 72.2 Mbps
 - Bidirectional IP/UDP
Comparison between mathematical model [5] and ns-3 simulation for an adapted and optimized version of the DCF on long-distance links. Three different values of maximum A-MPDU aggregation: 1023 Byte, 8191 Byte, 65,535 Byte, bounded by 4 ms medium occupancy. MCS7, 20 MHz, Short GI.
Comparison between ns-3 long-distance DCF simulation and ns-3 WiLDToken simulation. Send limit 4 ms, MCS7, 20 MHz, Short GI.
Comparison between DCF ns-3 simulation and WiLDToken. Send limit 4 ms, A-MPDU factor 3, MCS7, 20 MHz, Short GI.
Fairness: Comparison between ns-3 DCF simulation and ns-3 WiLDToken simulation. Send limit 4 ms, MCS7, 20 MHz, Short GI.
✓ A token-based MAC for long-distance links in a MR-MC Wireless Mesh Network (WMN)
✓ Initial experiments using ns-3
✓ In our scenarios, WiLDToken is superior to the DCF in terms of throughput, delay and fairness

? A real-world implementation could lead to additional insights or required adaptations
? Traffic class differentiation (already started)
? Legal issues and carrier sensing
Thank You!

Are there any questions?

M.Sc.
Michael Rademacher

Hochschule
Bonn-Rhein-Sieg
University of Applied Sciences

Fachbereich Informatik

Grantham-Allee 20
53757 Sankt Augustin
Tel. +49 2241 865 151
Fax +49 2241 865 8151

michael.rademacher@h-brs.de
www.h-brs.de
References

