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Sensor network

▐ Our world is populated by sensors
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Goals

▐ Secure Update:

 Confirm the device is in a known state

• No malicious code remains

 Verify the device is clean (no malware) before update

• Updates may contain sensitive information

▐ Efficient Update:

 We do not want to drain the batteries
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Related Approaches

▐ Device attestation 

 Hardware-based: secure but not likely supported

 Software-based: several attacks have been reported

▐ Secure memory erasure
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Proofs of Secure Erasure (PoSE[1])
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[ROM] PoSE [ROM] PoSE [ROM] PoSE

Only software attacks and

no real time help.

[1] Perito, D., and Tsudik, G. Secure code update for embedded devices via proofs of secure erasure. In Computer 

Security - ESORICS 2010, 15th European Symposium on Research in Computer Security, Athens, Greece, pp. 643–662.



Secure Code Update based on PoSE[1]
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[ROM] PoSE [ROM] PoSE [ROM] PoSE

Only software attacks and

no real time help.
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[1] Perito, D., and Tsudik, G. Secure code update for embedded devices via proofs of secure erasure. In Computer 

Security - ESORICS 2010, 15th European Symposium on Research in Computer Security, Athens, Greece, pp. 643–662.



Approach 1: Computationally expensive 
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𝑲

 𝑰 =? 𝑰

 𝑰 = 𝑴𝑨𝑪 𝑲′( 𝑪)

K’C

 𝑲′Ĉ

K’C

𝑰 = 𝑴𝑨𝑪𝑲′ 𝑪

 Computationally costly* 

 Extra code space for MAC 

(4.5KB of ROM)

*HMAC-SHA1 over 648KB in MicaZ requires 

~90 seconds

𝑲
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Approach 2: Additional communication round
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𝑲

 𝑰 =? 𝑰

 𝑰 = 𝑴𝑨𝑪 𝑲′( 𝒄  𝒊𝟏 …  𝒄  𝒊𝒕)

𝒊𝟏…𝒊𝒕 ← 𝒓

𝑰 = 𝑴𝑨𝑪𝑲′ 𝒄𝒊𝟏 …𝒄𝒊𝒕

 Computation reduced to t
blocks

 Probabilistic result* 

, 𝒓

,  𝒓

 𝒊𝟏…  𝒊𝒕 ←  𝒓

*648KB memory, block size 128 bit, in order to achieve 90% detection probability for 1,000 bits of malicious code, 

30% of the data blocks need to be examined

K’c c c

K’C K’c c c

 𝑲′ 𝒄  𝒄  𝒄

𝑲

decrypt with 𝑲

①

②

③



Intuitive Idea

▐ Principle of using PoSE in secure code update: 

 Only by having all the bits of the encrypted code image (step ①) can 

we retrieve the updated code image (step ③).

▐ All or Nothing Transform (AONT)

  Given all but one of the output blocks, it is infeasible to compute 

any of the original input blocks

▐ Would AONT deduce a more efficient secure code update protocol?
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…

n blocks

…

n+1 blocks

𝒄 𝒊 = 𝒎 𝒊 ⊕ 𝑭𝑲 𝒊 , 𝟏 ≤ 𝒊 ≤ 𝒏

𝒄 𝒏 + 𝟏 = 𝑲⊕𝒊=𝟏
𝒏 𝒄[𝒊]

K

Desai’s AONT



Secure code update based on AONT
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…

n blocks

…

n+1 blocks

𝒄 𝒊 = 𝒎 𝒊 ⊕ 𝑭𝑲 𝒊 , 𝟏 ≤ 𝒊 ≤ 𝒏

𝒄 𝒏 + 𝟏 = 𝑲⊕𝒊=𝟏
𝒏 𝒄[𝒊]

K

Desai’s AONT

…

n blocks

…

n+1 blocks

K𝒔 ,
𝒄 𝒊 = 𝒎 𝒊 ⊕ 𝑭𝑲 𝒊 , 𝟏 ≤ 𝒊 ≤ 𝒏

𝒓𝟏…𝒓𝒏 ← 𝒔,

𝑮𝒓(𝒙) cyclic shift 𝒙 for 𝒓 bits

𝒄 𝒏 + 𝟏 = 𝑲⊕𝒊=𝟏
𝒏 𝑮𝒓𝒊 𝒄 𝒊

Our approach



The Complete Picture
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C 𝑲, 𝒔
C

Ĉ

 𝒓𝟏…  𝒓𝒏 ← 𝒔,
 𝑲 =  𝒄 𝒏 + 𝟏 ⊕𝒊=𝟏

𝒏 𝑮 𝒓𝒊
 𝒄[𝒊]

, 𝒔

,  𝒔

 Single round 

 No cryptographic 

operations for memory 

erasure in order to retrieve 

the decryption key

decrypt with  𝑲

①

②

③



Security Analysis

▐ Adversary has to guess the shifted number of bits for each block 

that she wants to drop.

▐ Every bit of each block affects the decryption key.

▐ To drop 𝑏 𝑚-bit blocks, PA = max(𝑚−𝑏 , 2−𝑚)

▐ Optimization on I/O   (f-SUANT)

 Compute key block on selected fraction 𝑓 of the blocks.

• I/O reduced by 1 − 𝑓

• PA = max(m−𝑏, 1 − 𝑓 𝑏)
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Experiments Evaluation

▐ Measurement Settings

 MicaZ

• 128KB internal flash, mask certain section to ROM, 4KB of EEPROM, 

4KB of SRAM, 4KB EEPROM, 512KB external flash 

• TinyOS 2.1.2

 Avrora simulator

• Estimation of energy consumption
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Time and Energy Consumption
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Code Size

▐ SUANT requires less ROM space and leaves smaller footprints in 

RAM:
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Conclusion

▐ What we have gone through:

 SCU with MAC is inefficient

 How to construct secure code update protocol based on all-or-nothing 

transforms

▐ Gains

 Much less energy and time consumption than SotA

• 75% more efficient than MAC

• 30% more efficient than MAC + PDP and more secure

 Less ROM and RAM requirement
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Thank you!!

Questions?
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Extra – ROM discussion

▐ Mask ROM: e.g., MSP430 micro-controller

▐ Lockable memory: e.g. ATmega128 (unlock only by physical 

access)
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