
Secure Erasure and Code Update in

Legacy Sensors*

21. ITG Fachtagung Mobilkommunikation, 2016 Osnabrueck

NEC Laboratories Europe

Ghassan Karame

Wenting Li

* Published in 8th International Conference on Trust & Trustworthy Computing (TRUST15’)

Sensor network

▐ Our world is populated by sensors

Page 3

Goals

▐ Secure Update:

 Confirm the device is in a known state

• No malicious code remains

 Verify the device is clean (no malware) before update

• Updates may contain sensitive information

▐ Efficient Update:

 We do not want to drain the batteries

Page 4

Related Approaches

▐ Device attestation

 Hardware-based: secure but not likely supported

 Software-based: several attacks have been reported

▐ Secure memory erasure

Page 5

Proofs of Secure Erasure (PoSE[1])

Original Code

Malicious Code

Fresh

Randomness

Updated Code① rewrite

② prove

③ download

Provide random seed

or random image

Verify if device

possesses predefined

random image

Provide new

system image

Page 6

[ROM] PoSE [ROM] PoSE [ROM] PoSE

Only software attacks and

no real time help.

[1] Perito, D., and Tsudik, G. Secure code update for embedded devices via proofs of secure erasure. In Computer

Security - ESORICS 2010, 15th European Symposium on Research in Computer Security, Athens, Greece, pp. 643–662.

Secure Code Update based on PoSE[1]

Original Code

Malicious Code

Fresh

Randomness

Updated Code① rewrite

② prove

③ download

Provide random seed

or random image

Verify if device

possesses predefined

random image

Provide new

system image

Page 7

[ROM] PoSE [ROM] PoSE [ROM] PoSE

Only software attacks and

no real time help.

Provide encrypted

new system image

Encrypted

Code Image

Provide decryption

key

③ decrypt

Verify if device

possesses predefined

encrypted image

[1] Perito, D., and Tsudik, G. Secure code update for embedded devices via proofs of secure erasure. In Computer

Security - ESORICS 2010, 15th European Symposium on Research in Computer Security, Athens, Greece, pp. 643–662.

Approach 1: Computationally expensive

Page 8

𝑲

 𝑰 =? 𝑰

 𝑰 = 𝑴𝑨𝑪 𝑲′(𝑪)

K’C

 𝑲′Ĉ

K’C

𝑰 = 𝑴𝑨𝑪𝑲′ 𝑪

 Computationally costly*

 Extra code space for MAC

(4.5KB of ROM)

*HMAC-SHA1 over 648KB in MicaZ requires

~90 seconds

𝑲

decrypt with 𝑲

①

②

③

Approach 2: Additional communication round

Page 9

𝑲

 𝑰 =? 𝑰

 𝑰 = 𝑴𝑨𝑪 𝑲′(𝒄 𝒊𝟏 … 𝒄 𝒊𝒕)

𝒊𝟏…𝒊𝒕 ← 𝒓

𝑰 = 𝑴𝑨𝑪𝑲′ 𝒄𝒊𝟏 …𝒄𝒊𝒕

 Computation reduced to t
blocks

 Probabilistic result*

, 𝒓

, 𝒓

 𝒊𝟏… 𝒊𝒕 ← 𝒓

*648KB memory, block size 128 bit, in order to achieve 90% detection probability for 1,000 bits of malicious code,

30% of the data blocks need to be examined

K’c c c

K’C K’c c c

 𝑲′ 𝒄 𝒄 𝒄

𝑲

decrypt with 𝑲

①

②

③

Intuitive Idea

▐ Principle of using PoSE in secure code update:

 Only by having all the bits of the encrypted code image (step ①) can

we retrieve the updated code image (step ③).

▐ All or Nothing Transform (AONT)

 Given all but one of the output blocks, it is infeasible to compute

any of the original input blocks

▐ Would AONT deduce a more efficient secure code update protocol?

Page 11

…

n blocks

…

n+1 blocks

𝒄 𝒊 = 𝒎 𝒊 ⊕ 𝑭𝑲 𝒊 , 𝟏 ≤ 𝒊 ≤ 𝒏

𝒄 𝒏 + 𝟏 = 𝑲⊕𝒊=𝟏
𝒏 𝒄[𝒊]

K

Desai’s AONT

Secure code update based on AONT

Page 12

…

n blocks

…

n+1 blocks

𝒄 𝒊 = 𝒎 𝒊 ⊕ 𝑭𝑲 𝒊 , 𝟏 ≤ 𝒊 ≤ 𝒏

𝒄 𝒏 + 𝟏 = 𝑲⊕𝒊=𝟏
𝒏 𝒄[𝒊]

K

Desai’s AONT

…

n blocks

…

n+1 blocks

K𝒔 ,
𝒄 𝒊 = 𝒎 𝒊 ⊕ 𝑭𝑲 𝒊 , 𝟏 ≤ 𝒊 ≤ 𝒏

𝒓𝟏…𝒓𝒏 ← 𝒔,

𝑮𝒓(𝒙) cyclic shift 𝒙 for 𝒓 bits

𝒄 𝒏 + 𝟏 = 𝑲⊕𝒊=𝟏
𝒏 𝑮𝒓𝒊 𝒄 𝒊

Our approach

The Complete Picture

Page 13

C 𝑲, 𝒔
C

Ĉ

 𝒓𝟏… 𝒓𝒏 ← 𝒔,
 𝑲 = 𝒄 𝒏 + 𝟏 ⊕𝒊=𝟏

𝒏 𝑮 𝒓𝒊
 𝒄[𝒊]

, 𝒔

, 𝒔

 Single round

 No cryptographic

operations for memory

erasure in order to retrieve

the decryption key

decrypt with 𝑲

①

②

③

Security Analysis

▐ Adversary has to guess the shifted number of bits for each block

that she wants to drop.

▐ Every bit of each block affects the decryption key.

▐ To drop 𝑏 𝑚-bit blocks, PA = max(𝑚−𝑏 , 2−𝑚)

▐ Optimization on I/O (f-SUANT)

 Compute key block on selected fraction 𝑓 of the blocks.

• I/O reduced by 1 − 𝑓

• PA = max(m−𝑏, 1 − 𝑓 𝑏)

Page 14

Experiments Evaluation

▐ Measurement Settings

 MicaZ

• 128KB internal flash, mask certain section to ROM, 4KB of EEPROM,

4KB of SRAM, 4KB EEPROM, 512KB external flash

• TinyOS 2.1.2

 Avrora simulator

• Estimation of energy consumption

Page 16

Time and Energy Consumption

Page 17

Code Size

▐ SUANT requires less ROM space and leaves smaller footprints in

RAM:

Page 18

Conclusion

▐ What we have gone through:

 SCU with MAC is inefficient

 How to construct secure code update protocol based on all-or-nothing

transforms

▐ Gains

 Much less energy and time consumption than SotA

• 75% more efficient than MAC

• 30% more efficient than MAC + PDP and more secure

 Less ROM and RAM requirement

Page 19

Thank you!!

Questions?

Page 20

Page 21

Extra – ROM discussion

▐ Mask ROM: e.g., MSP430 micro-controller

▐ Lockable memory: e.g. ATmega128 (unlock only by physical

access)

Page 22

