

5G meets Industrie 4.0

Osnabrück, 12. Mai 2016

Prof. Dr. Hans D. Schotten

University of Kaiserslautern German Research Center for Artifical Intelligence DFKI

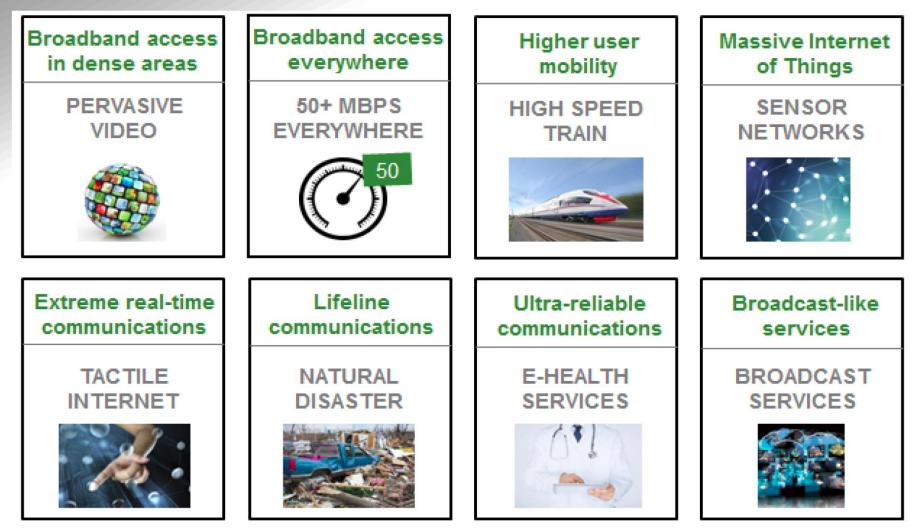
The Mobile Story

- Bigger than Hollywood
 - IOS app business surpassing movie theater ticket sales
- Mobile is eating the world ... and itself
 - 4 bn people buying phones every two years, 50% of global internet traffic, 50% of consumer electronics sales, …
- 5G for verticals
 - Looking for new opportunities; targeting ongoing Make or Buy discussions
- More than just Olympics
 - Not only higher data rate, higher frequencies, lower latency, better energy efficiency but also enabling new business, reducing service creation time, providing forward compatibility, offering more flexible deployment strategies, ...
- "Cannot wait" might have to wait
 - Costs versus business opportunity trade-off needs to be understood.
- Design follows business
 - What will 5G deliver to the verticals ... network slieces, trust zones (edge clouds), ...
- Start of something ...
 - Is 5G just the next generation, or the last one, will there be a nationwide 5G roll-out, ...

The 5G Users

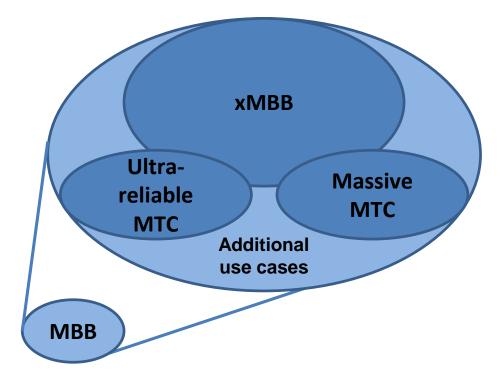
- Kids watching videos (50% of mobile traffic, still growing).
- Railways: 300 Mb/s per train, 95% time availability.
- Broadcast (DVB): 240 Mb/s with 95% of areas covered.
- **PPDR:** 2 x 10 Mb/s plus 10 Mb/s DL, deep indoor (+ 15 dB), security, group calls, push to talk, high availability
- Railways GSM-R / ETCS: Erlang 1 per train, 95% availability per every 100
 m railway track (EIRENE), group call, functional addressing
- **PMR (taxi, pizza):** broadcast, selective calling, functional addressing, voice and data
- ... telematics, logistics, military networks, audio broadcast ...

5G needs to address their "Make or Buy" discussions.

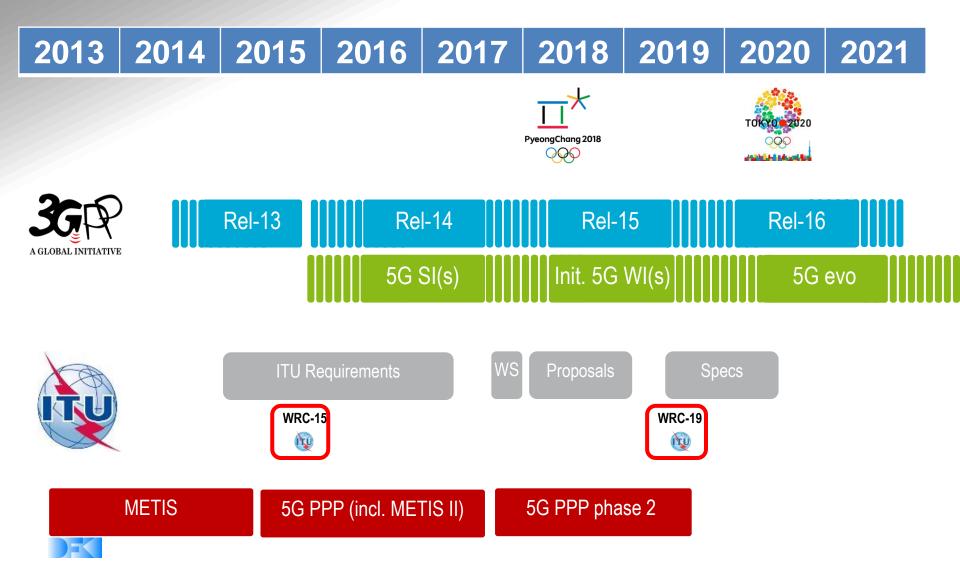


•

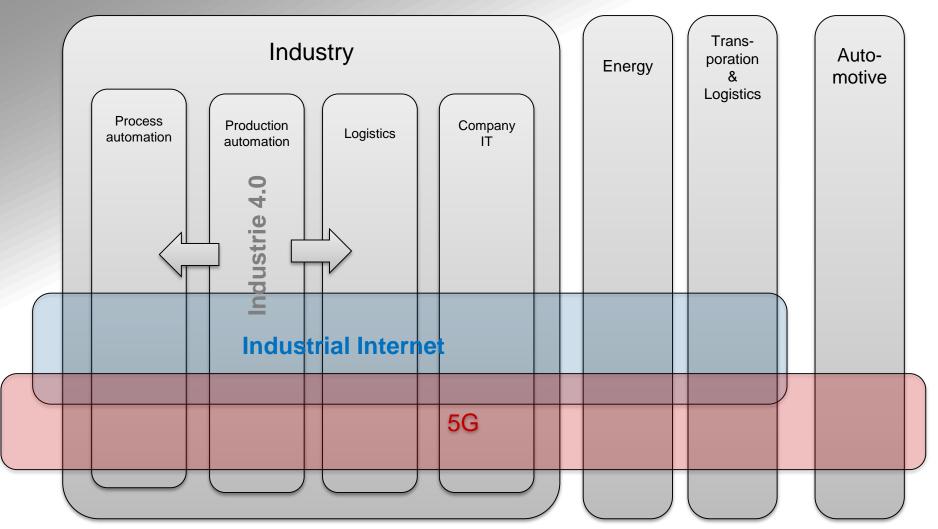
. . .



5G Main Services


- Extreme Mobile Broadband (xMBB)
 - High data-rates
 - Low-latency communications
 - Improves Quality of Experience
- Massive Machine-Type Communications (M-MTC)
 - Scalable connectivity
 - Wide area coverage
 - Deep penetration
 - Low cost & complexity
- Ultra-reliable/Critical MTC (U-MTC)
 - Ultra-reliable
 - Low-latency
 - E.g., V2X communication and industrial control applications.

IoT, Industrial Internet and Industrie 4.0


Internationally competing approaches

- Industrie 4.0 program in Germany
 - Driven by and focused on production
 - Initiated by goverment and academia
 - Covering entire product life cycle, RAMI 4.0 reference architecture
- Industrial Internet Consortiums (IoE Ansatz)
 - Horizontal approach covering several industrial domains
 - Focused on connectivity, IT integration, security
- Made in China 2025 und Internet Plus
- Smart Factory (Netherlands), Usine du Futur (France), High Value Manufacturing Catapult (UK), Fabbrica del Futuro (Italy), Factory of the Future (EU)
- OneM2M (internationale Standardisierung a la 3GPP)

IoT, Industrial Internet and Industrie 4.0

Industrie 4.0 versus Industrial Internet

Example: MAPI Foundation

	Industry 4.0	The Industrial Internet Consortium	
Key authors	German government	Large multinationals	
Key stakeholders	Government, academia, business	Business, academia, government	
Taxonomy of revolutions	Four revolutions	Three revolutions	
Support platforms	Government industrial policy	Open membership nonprofit consortium	
Sectoral focus	Industry	Manufacturing, energy, transportation, healthcare, utilities, cities, agriculture	
Technological focus	Supply chain coordination, embedded systems, automation, robots	Device communication, data flows, device controls and integration, predictive analytics, industrial automation	
Holistic focus	Hardware	Software, hardware, integration	
Geographical focus	Germany and its companies	Global marketplace	
Corporate focus	SMEs	Companies of all sizes	
Optimization focus	Production optimization	Asset optimization	
Standardization focus	On agenda	Recommendations to standards organizations	
Economic approach	Normative economics	Positive economics	
Overall business approach	Reactive	Proactive	

5G meets Industry 4.0

Process Automation

- Mainly monitoring & diagnostics functions
- Characterized by often rather large distances
 & potentially harsh environments
- First established solutions exist, e.g.,
 WirelessHART, ISA100.11a, ZigBee, etc.

Factory Automation

□ (Closed-loop) control of manufacturing processes → currently

dominated by fieldbusses

- Rotating & moving parts
- Condition monitoring
- Self-guiding products

Source: BOSCH

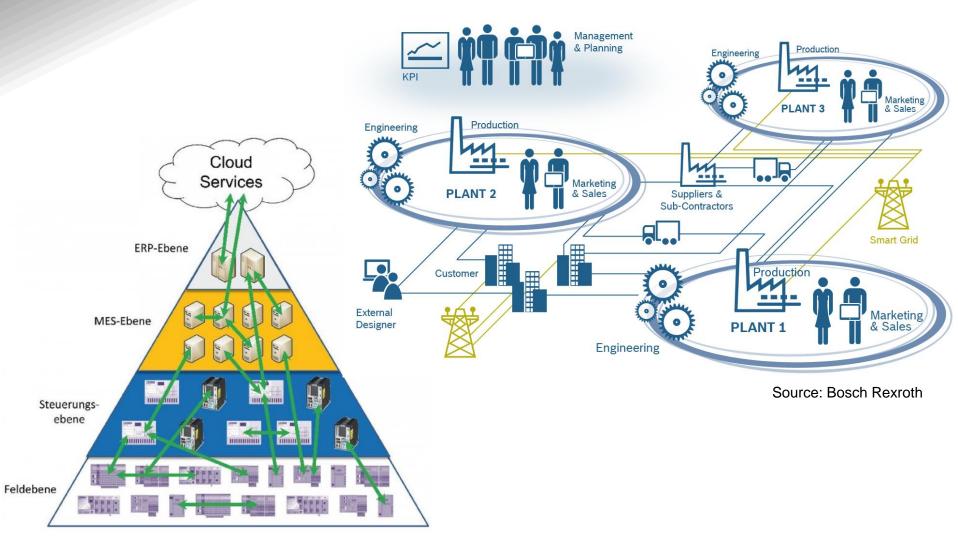
Production-IT

- Portable monitoring & control devices / HMIs¹ (e.g., tablet PCs, smartphones)
- Augmented reality
- Integration of production facilities in company
 IT infrastructure (e.g., MES²)

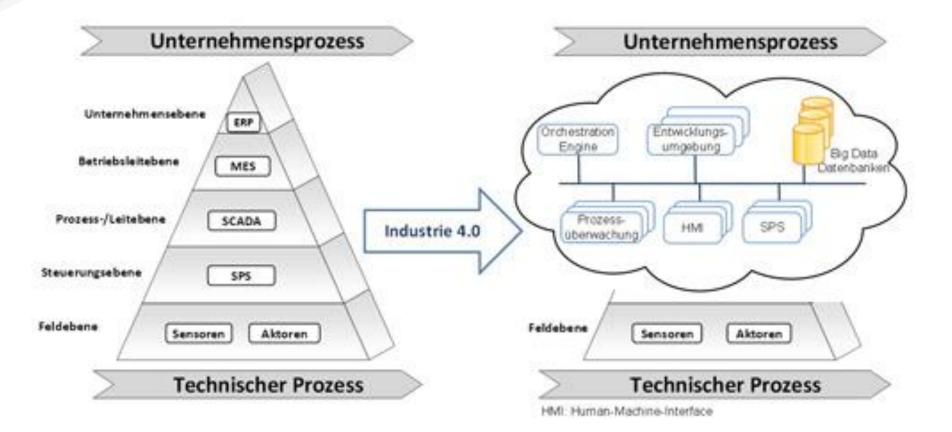
Source: SAP

Logistics

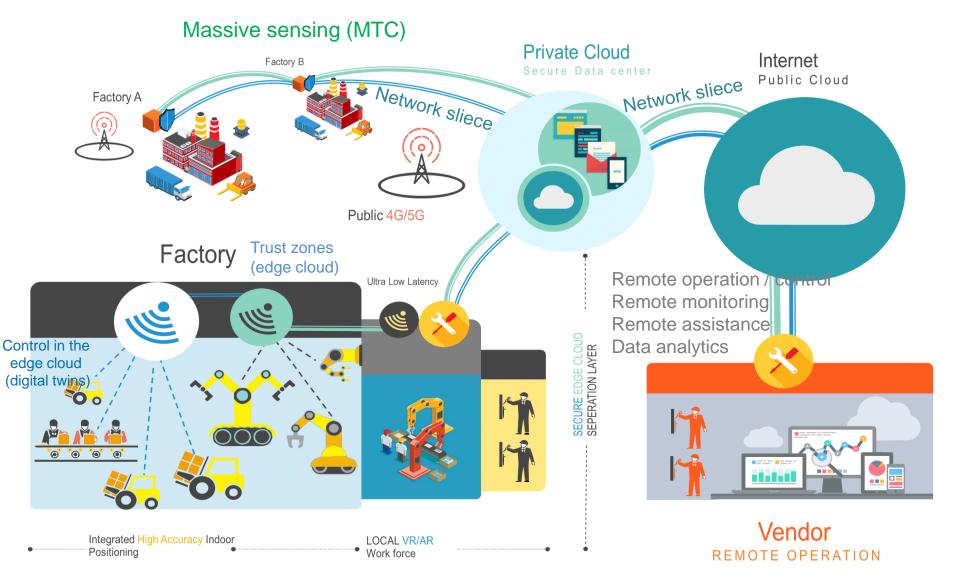
- Mobile service robots
- (Autonomous) transport / cargo units
- Product identification
- Tracking and localization of people & assets


Source: FESTO

Source: Bosch


Industrie 4.0

Industrie 4.0



Source: Centrum Industrial IT

Smart Factory Scenario

Industrial Radio

	Closed-Loop Control	Condition Monitoring	Process Automation	HMIs ¹ / Augm. Reality
Latency	50 µs… 1 ms [,] deterministisch	10 ms> 1 s	5 ms1 s	down to 1-4 ms
Jitter	\leq ~10 µs, determin.	> 5-10 ms	> 5-10 ms	< 1 ms
Packet loss rate ⁴	< 1e-9	< 1e-4	< 1e-4	< 1e-4
Data rate (per node)	up to 100 kbit/s	kbit/s	kbit/s	Mbit/s – Gbit/s
Node density	High	High	Low	Low – Medium
TX Distance	up to 100 m	up to 100 m	up to 1 km	1 m100 m, multicell
Topology	Star	Mesh / Star	Mesh / Star	Star / Ad-hoc
Bands	2.4 / 5 GHz	2.4 GHz and < 1 GHz		2.4 / 5 / 60 GHz
Energy efficiency	-	> 10 years	> 10 years	> 1 day for HMI
Coexistence	Yes	Yes	Yes	Yes
Mobility support	no	-	-	Yes
Security	Yes	Yes	Yes	Yes
Localization	unclear	-	-	Yes, cm resolution

5G meets Industrie 4.0

Generic requriements

- Usability
- Cost efficiency
- Safety and security, resilience
- Brownfield capability / Backwards and forward compatibility
- Flexibility wrt policies and regulation
- Scalability
- Acceptance in industry ecosystem (what to pay for)
 - Network sliece
 - Trust zone (edge cloud)
 - Remotely managed networks vs interacting network management / control vs autonomous network management

5G meets Industrie 4.0

Specific requriements (examples)

Process automation

• Massive MTC, resilience, interfaces with industrial backbone

Production automation

- Teleoperation (real-time capable network sliece, availability)
- AR tele assistance (real-time capable, broadband network sliece)
- Machines / mobile robots with control in edge cloud (ultra reliable, ultra fast industrial radio, secure edge cloud, localisation, ... → spectrum)

Logistics / IT

• Trust zones (edge clouds) supporting implementation of company policies

Open topics

Complexity

• Generic network slices are complex.

Standardisation

3GPP / ETSI / OneM2M vs IEC – partly not perfectly sync'ed.

Security

• We try to increase reliability and security by softwarisation.

Economic viability of network slices

- Costs of network slieces are not (yet) understood.
 Net neutrality
- Can become a major show stopper.

Thank you

