

Evaluation of M2M Data Traffic Aggregation in LTE-A Uplink

¹Yasir Mehmood
²Safdar Nawaz Khan Marwat
³Dr. Yasir Zaki
¹Prof. Dr. Carmelita Görg
⁴Prof. Dr. Andreas Timm-Giel

¹Communication Networks, (ComNets), University of Bremen

²Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar, Pakistan ³Computer Science Department, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates (UAE) ⁴Institute of Communication Networks, University of Technology, Hamburg, Germany

07 May, 2015

ym@comnets.uni-bremen.de

TZi Agenda

- Introduction
 - M2M communication and cellular networks evolution
- Problem Definition challenges for mobile networks
- Proposed Methodology
 - Uplink M2M data traffic aggregation
- Simulation Results and Analyses
 - LTE-A model and parameters description
 - Results Analyses
- Conclusions
- Outlook

TZi M2M communication

Characteristics

- Large number of devices transmitting small sized data
- Higher ratio of uplink to downlink traffic volume
- Mobility support e.g. logistics processes and ITS¹

TZi M2M architecture

EXZELLENT.

TZi Cellular network evolution

TZi LTE-A enhancements

3GPP TS 36.216 V10.0.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation", September 2010

T Problem definition—mobile M2M traffic

[1] https://www.metis2020.com/documents/deliverables/

7

[2] 3GPP Technical Specification 23.888 V 11.0.0 (2012) System improvements for Machine-Type Communications

[3] Tarik Taleb, Andreas Kunz, "Machine Type Communications in 3GPP Networks: Potential, Challenges, and Solutions" Communication

Magazine, IEEE, vol. 51, no. 3 March 2012

ym@comnets.uni-bremen.de

Jniversität Bremen*

EXZELLENT.

T Problem definition—M2M traffic forecasts

- ► 53 million metering M2M devices by 2020 OFCOM report [1]
- One billion cellular M2M devices by 2020, growing 25 per cent per year GSMA report [2]
- The number of M2M device worldwide will grow to 3.2 billion in 2024 M2M magazine [3]

[1] http://stakeholders.ofcom.org.uk/binaries/research/technology-research/2014/M2M_FinalReportApril2014.pdf Accessed: 6 May 2015

[2] https://gsmaintelligence.com/research/2015/02/cellular-m2m-forecasts-unlocking-growth/457// Accessed: 6 Feb 2015

[3] http://www.machinetomachinemagazine.com/2014/08/20/report-m2m-device-connections-forecast-2014-2024/ Accessed: 6 May 2015

How to deal with a thousands of machine devices?

Proposed Methodology—M2M Data Traffic Aggregation in LTE-Advanced Uplink

T M2M uplink data traffic aggregation

1: Local area network; 2: Donor eNodeB; 3: M2M access gateway; 4: Access link; 5: Backhaul link

ym@comnets.uni-bremen.de

TZi M2M uplink data traffic aggregation

- Relay node is used to aggregate uplink M2M traffic
- Small M2M data packets are aggregated at the PDCP
- Aggregated packet is served based on the available transport block size and timer

GTP: GPRS tunneling protocol UDP: User datagram protocol PDCP: Packet data convergence protocol RLC: Radio link control MAC: Medium access control PHY: Physical layer

Com Nets Kommunikationsnetze

Simulation Results and Analyses

[1] https://www.metis2020.com/documents/deliverables/

TZi Simulation environment—(LTE-A model¹)

Parameters	Values
Cell layout	Single cell (7 DeNBs)
Inter DeNB distance	500 m
Transmission bandwidth	5 MHz
No. of PRBs	25
No. of PRBs for RN	5
Uplink DeNB scheduler	BQA [1]
Simulation length	1000 sec
eNB coverage radius	350 m
Max terminal power	23 dBm
Frequency reuse factor	1
MCS	QPSK, 16QAM, 64QAM,
Channel models 1. Path loss 2. Slow fading	From Vienna simulator [2] 1. 128.1 + 37.6log10(R), R in km 2. Log-normal shadowing, correlation 1, deviation 8 dB
M2M traffic model	
Message size	42 bytes at the PHY layer
Inter-send time	1 s
Device state	No mobility

[1] Safdar Nawaz Khan Marwat, Thushara Weerawardane, Yasir Zaki, Carmelita Goerg, and Andreas Timm-Giel, "Analysis of Radio Resource Allocation in LTE Uplink," *Wireless Personal Communications*, vol. 79, no. 3, pp. 2305-2322, December 2014

[2] http://www.nt.tuwien.ac.at/research/mobile-communications/vienna-lte-a-simulators/2010

¹The LTE-A model is developed in the OPNET Modeler jointly by the ComNets (Communication Networks), University of Bremen, Germany and the Institute of Communication Networks, University of Technology, Hamburg, Germany.

13

ym@comnets.uni-bremen.de

TZi Results comparison—average PRBs

ym@comnets.uni-bremen.de

Com Nets

TZi Results comparison—average E2E delay

ym@comnets.uni-bremen.de

TZi Conclusions

- Increasing M2M traffic might significantly degrade the performance of regular LTE-A traffic due to small sized payloads
- The limited radio resources can be efficiently used for mobile M2M communications with the proposed data aggregation scheme
- Approximately 38% more machine devices are served with the proposed scheme as compared to traditional relaying
- The expiry timer has no significant impact on the M2M delay in the high loaded scenarios

TZi Outlook

- Quality-of-service (QoS)-aware data traffic aggregation for the uplink M2M traffic
- Implementation of data traffic aggregation for the downlink M2M traffic

Thank You ‼

ym@comnets.uni-bremen.de

