An Empirical Evaluation of the Received Signal Strength Indicator for fixed outdoor 802.11 links

Michael Rademacher michael.rademacher@h-brs.de

Hochschule Bonn-Rhein-Sieg

8. May 2015

M. Rademacher

Introduction and Motivation

Related Work

Methodology RSSI Measuring Environment

Measurements and Results Distribution function of the RSSI

Conclusion Future work

Introduction and Motivation

- Rural areas often lack (fast) connectivity
- WiFi long-distance mesh networks
- Last year: Optimization of the MAC [1]
- Received Signal Strength Indicator (RSSI)
- Indicate optimum parameters
- Path loss model verification [2] [3]
- Indicate interferences

environment.

-> Dynamic frequency allocation

Broadband \geq 50 Mbps (2014) [4]

Variation of the RSSI in a stable short-term

Samples needed to determine "real" RSSI.

Research questions:

Distribution function of the RSSI. The impact of the production series.

- [5] RSSI is predictable and Gaussian
- [6] RSSI is non-predictable and non-Gaussian
- [7] wrong modeling of RSSI; wrong simulations
- [8] similar conducted experiments:
 - ► Variation of the measured RSSI: 15.5 *dB*
 - Mean RSSI varies greatly during one experiment
 - non-Gaussian
- [9] RSSI distributions are left-skewed
 - Depended on line-of-sight and signal power
- [10] smartphone based location services:
 - Variation of the measured RSSI: 15.5 dB
 - Distribution: positive kurtosis and left-skewed
- -> All experiments are conducted indoor.

We used two different methods to obtain the RSSI:

Libpcap

- Currently best practice [11][9][10]
- Values reported from the driver
- Per 802.11 packet
- Integer accuracy (-74,73)
- Radiotap-Field: Antenna Signal
- Filtering to 802.11 data packets

Spectral snapshots FTT

- Newly evaluated
- I/Q data from the NIC
- Per OFDM-subcarrier
- Increased accuracy
- Additional processing needed
- Qualcomm/Atheros NICs [12]

Methodology - RSSI Measuring - Spectral snapshots FTT

- Additional software is needed to interpret the binary data [13]
- Userspace trigger -> 56 * I/Q data from WiFi NIC: $z_i = I_i + Q_i$
- Repeated every 3-4 µs for a 200 spectral scans

Comparability of WiFi NIC spectrum scanner

Artificial signal at 2.4 GHz simultaneously to

Methodology - Setting up the experiments

- First experiments indoor
 - -> Multipath-propagation
- Switch to outdoor environment
 - Line-of-sight
 - No reflections or interferences
- 50 measurements per card
- 3 different cards
- Transmitter -> Receiver (RSSI)

Hardware and Software used				
System Board	Alix 3D2			
WiFi Card	R52HN (AR9220)			
Linux Kernel Rev	3.16.7			
Libpcap and tshark	1.3.0 and 1.8.2			
mgen	v5.02, UDP			
traffic	500 PPS, 1450 Byte			
802.11	5240 MHz, 6 Mbps			

Variation of the RSSI in a stable short-term environment

- Sample means in reference to the overall mean (50 measurements).
- Normalized to 0 dB for comparison with [8]

Samples needed to determine "real" RSSI.

- Deviation of the mean after a certain amount of packets.
- ECDF using 150 independent measurements

-> Less packets needed / less deviation compared to [8].

-> After 1000 packets. Mean does not change more than 0.5 dB.

Distribution function of the RSSI - Histograms

- Spectral scan feature provides greater accuracy.
- Based on spectral scan check for normality using:
 - Kolmogorov-Smirnov test [14]
 - Lilliefors test [15]
 - Jarque-Bera test [16]
- At a significance level of 5%, for all experiments, all tests reject the null hypothesis that "the data origins from a normal distribution"
- Negative skewness and positive kurtosis for all experiments

Test	Cards	RSSI Std		Kurtosis	Skewness
		рсар	Sscan	$Sscan\ mean{\pm}Std$	
1	$1\mapsto 2$	0.43 dB	0.34 dB	3.42 ± 1.14	-0.64 ± 0.09
2	$2 \mapsto 3$	0.40 dB	0.34 dB	1.84 ± 0.58	-0.45 ± 0.06
3	$3 \mapsto 2$	0.39 dB	0.33 dB	1.68 ± 0.58	-0.43 ± 0.06

Comparison of different WiFi cards:

- Low RSSI standard deviation occurs in a predictable way.
- A left-skewness and kurtosis occurs in a predictable way.
- This verifies the trend reported by other researchers [9]
- Other distributions may occur from indoor propagation effects?

- Analysis of the RSSI for fixed 802.11 outdoor point-to-point links
- First analysis without additional propagation effects
- A new methodology for obtaining RSSI values based on the spectrum scan feature of recent Atheros/Qualcom WiFi card
- We have shown a much smaller variation of the RSSI mean among independent transmissions compared to [8, 9]
- > We measured a constant skewness and kurtosis for the distribution
- The RSSI value can not be described by a normal distribution

- Study the influence of different parameters
 - Distance, transmission power
- Evaluate propagation models for long-distance 802.11 based links
- Build a dynamic interference classifier
 - Let spectrum scan run in background
 - Aggregate data and report changes
- -> Dynamic Frequency Allocation

Thank you very much!

Are there any questions?

0

M.Sc. Michael Rademacher Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Fachbereich Informatik

Grantham-Allee 20 53757 Sankt Augustin Tel. +49 2241 865 151 Fax +49 2241 865 8151

michael.rademacher@h-brs.de www.h-brs.de

References

- M. Rademacher. Performance estimation and optimization of the IEEE802.11 MAC layer for long distance point-to-point links. Tech. rep. Grantham-Allee 20, 53757 Sankt Augustin: Hochschule Bonn-Rhein-Sieg, 2014, p. 109. URL: http://opus.bib.hochschule-bonn-rhein-sieg.de/opus-3.3/volltexte/2015/30.
- T. Zhou et al. "A Deterministic Approach to Evaluate Path Loss Exponents in Large-Scale Outdoor 802. 11 WLANs". In: Local Comput. Networks October (2009), pp. 348–351.
- D. B. Green and M. S. Obaidat. "An Accurate Line of Sight Propagation Performance Model for Ad-Hoc 802. 11 Wireless LAN (WLAN) Devices". In: ICC (2002), pp. 3424–3428.
- [4] TUEV Rheinland Consulting GmbH. Bericht zum Breitbandatlas Mitte 2014 im Auftrag des Bundesministeriums fuer Verkehr und digitale Infrastruktur (BMVI). Tech. rep. 2014.
- [5] A. Haeberlen et al. "Practical robust localization over large-scale 802.11 wireless networks". In: Proc. 10th Annu. Int. Conf. Mob. Comput. Netw. MobiCom '04 (2004), p. 70. DOI: 10.1145/1023720.1023728. URL: http://portal.acm.org/citation.cfm?doid=1023720.1023728.
- [6] A. M. Ladd et al. "Robotics-based location sensing using wireless ethernet". In: <u>Wirel. Networks</u> 11.1-2 (2005), pp. 189–204. ISSN: 10220038. DOI: 10.1007/s11276-004-4755-8.
- [7] K. Tan et al. "Comparing simulation tools and experimental testbeds for wireless mesh networks". In: <u>Pervasive Mob. Comput.</u> 7.4 (2011), pp. 434–448. ISSN: 15741192. DOI: 10.1016/j.pmcj.2011.04.004.
- [8] S. Robitzsch, L. Murphy, and J. Fitzpatrick. "An analysis of the Received Signal Strength accuracy in 802.11a networks using Atheros chipsets: A solution towards self configuration". In: 2011 IEEE GLOBECOM Work. GC Wkshps 2011 (2011), pp. 1429–1434. DOI: 10.1109/GL0C0WW.2011.6162422.
- K. Kaemarungsi and P. Krishnamurthy. "Analysis of WLAN's received signal strength indication for indoor location fingerprinting". In: Pervasive Mob. Comput. 8.2 (2012), pp. 292–316. ISSN: 15741192. DOI: 10.1016/j.pmcj.2011.09.003. URL: http://dx.doi.org/10.1016/j.pmcj.2011.09.003.
- [10] J. Luo and X. Zhan. "Characterization of Smart Phone Received Signal Strength Indication for WLAN Indoor Positioning Accuracy Improvement". In: J. Networks 9.3 (2014), pp. 739–746. ISSN: 1796-2056. DOI: 10.4304/jnv.9.3.739-746. URL: http://ojs.academypublisher.com/index.php/jnv/article/view/12150.
- [11] S. Robitzsch and L. Murphy. "Empirical analysis of measured 802.11 receive signal strength values using various Atheros based Mini-PCI cards". In: 2012 IEEE Int. Symp. a World Wireless, Mob. Multimed. Networks, WoWMoM 2012 - Digit. Proc. (2012). DOI: 10.1109/WoWM.2012.6263780.
- [12] A. Chadd. Spectral Scan Support. 2013. URL: https://wiki.freebsd.org/dev/ath_hal(4)/SpectralScan (visited on 03/16/2015).
- [13] Simon Wunderlich. FFT_eval. 2014. URL: https://github.com/simonwunderlich/FFT_eval.
- [14] F. J. Massey Jr. "The Kolmogorov-Smirnov test for goodness of fit". In: J. Am. Stat. Assoc. 46.253 (1951), pp. 68-78.
- [15] H. W. Lilliefors. "On the Kolmogorov-Smirnov test for normality with mean and variance unknown". In: J. Am. Stat. Assoc. 62.318 (1967), pp. 399-402.
- [16] C. M. Jarque and A. K. Bera. "A test for normality of observations and regression residuals". In: Int. Stat. Rev. Int. Stat. (1987), pp. 163–172.