Distributed cooperative HTTP Caching in Mobile Networks

Chris Drechsler, <u>Gerd Windisch</u> Chair for Communication Networks Chemnitz University of Technology

- Introduction
- Improved HTTP Caching Method
- Distributed Caching Architecture
- Distributed Cache Operation
- Summary

Introduction

- Key challenge for mobile network operators:
 - tremendous increase in mobile data traffic (dominant protocol: HTTP)
- Solution for HTTP traffic reduction in RAN and core:

\rightarrow Caching at eNodeB site

- Advantages:
 - no access to GTP-tunnel (S1-interface) required
 - access transport cost savings (compared to centralized caching at S/P-GW)
 - QoS/QoE improvement
- Disadvantages:
 - small population size (at eNodeBs) \rightarrow low hit rate (caching efficiency)
 - higher cost for distributed cache deployment (smart proxies at eNodeBs)

Introduction

- Motivation:
 - increase caching efficiency \rightarrow improved HTTP caching method
 - minimize cost of cache deployment
 - use of storage on UEs for building a distributed cache → free of charge from the operators perspective
 - minimal additional functionality in network elements

Introduction

Improved HTTP Caching Method

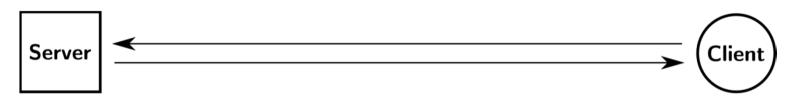
- Distributed Caching Architecture
- Distributed Cache Operation
- Summary

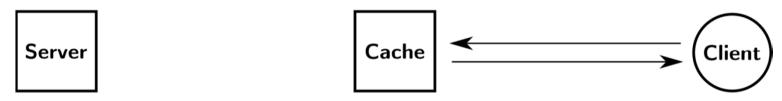
Improved HTTP Caching - HTTP Caching Efficiency

- Estimated efficiency potential of HTTP caching:
 - up to 68% HTTP traffic reduction (byte hit rate, BHR)
- Caching efficiency observed today:
 - only 10-20% (byte hit rate)
- Reasons for low caching efficiency:
 - difficult detection of duplicate payloads, example: http://s1.videoportal.com/PopularVideo.webm?userid=1111 vs. http://s2.videoportal.com/PopularVideo.webm?userid=2222
 - personalization
 - explicit suppression of caching by content producers
 - too small cache sizes
- \rightarrow new caching method to improve the caching efficiency

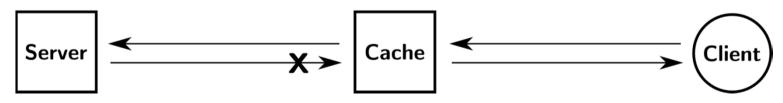
Improved HTTP Caching - Basic Concept

• HTTP header field extension:

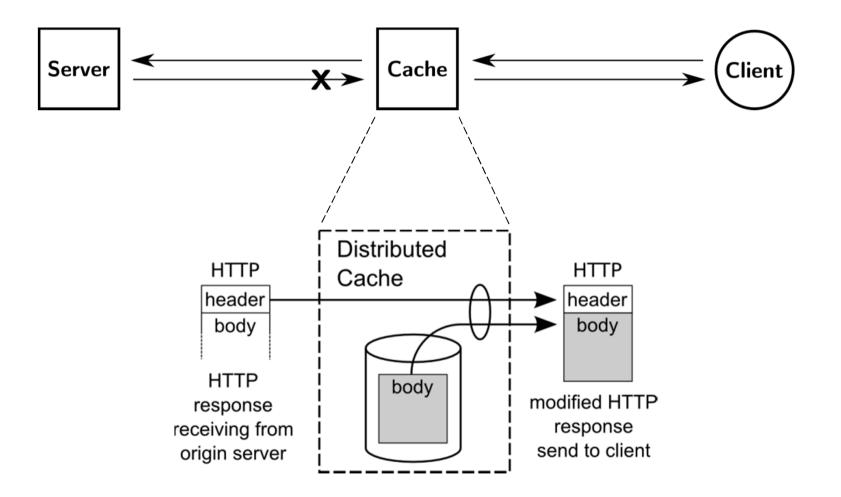

GET /videos/PopularVideo.webm HTTP/1.1 Host: example.com


Improved HTTP Caching - Basic Concept

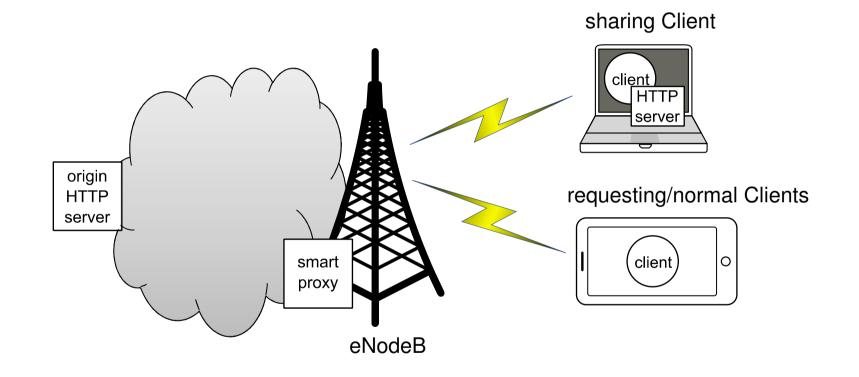
• Modified cache operation:



Traditional Caching (example: cache hit):



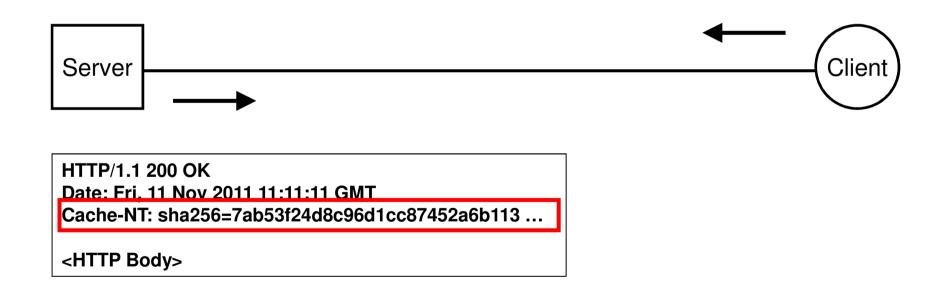
Modified Caching (example: cache hit):


Improved HTTP Caching - Basic Concept

• Modified cache operation:

- Introduction
- Improved HTTP Caching Method
- Distributed Caching Architecture
- Distributed Cache Operation
- Summary

Distributed Caching Architecture - Overview

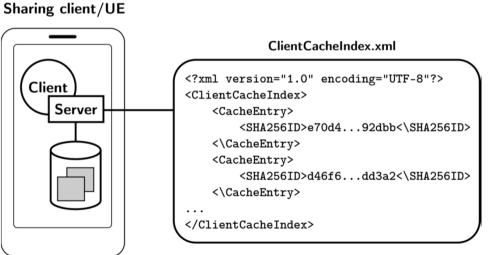


Distributed Caching Architecture - Origin HTTP server

Origin HTTP Server:

- acts like a normal HTTP server in the Internet
- one difference: adds the new HTTP header field

GET /videos/PopularVideo.webm HTTP/1.1 Host: example.com



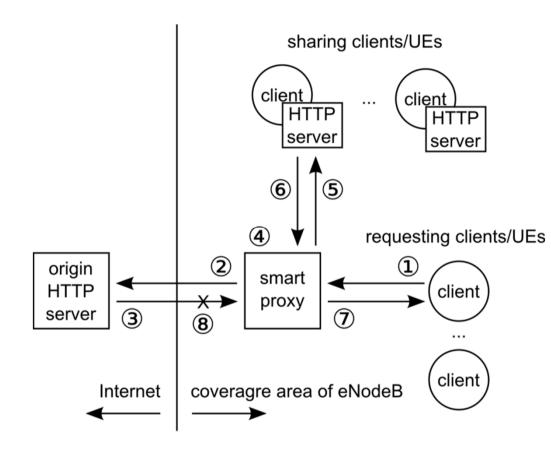
Requesting Clients:

• act like normal clients

Sharing Clients:

- sharing clients/UEs run a HTTP server
- they provide:
 - shared resources
 - index of shared resources

Distributed Caching Architecture - Smart HTTP Proxy


- Serves as a central element and lies in the data path between origin HTTP server and the clients/UEs
- Two basic functions:
 - builds an index of all shared resources (of all participating sharing clients within the cell coverage area of the eNodeB)
 - analyzes all incoming HTTP traffic and scans the HTTP header for the hash value (in the new header field)
- Can be easily implemented in eNodeBs as a software feature (no hardware upgrade needed)

Distributed Caching Architecture - Smart HTTP Proxy

- Building the index of all shared resources (within the cell coverage area of the eNodeB)
 - not trivial since in a mobile environment the number of sharing clients/UEs is constantly changing
 - the index update is normally triggered periodically for active UEs
 - additional index updates are triggered by handover events and after attach or detach
 - special handling of idle mode UEs:
 - a timer is set when the UE goes idle
 - the UE and its shared resources are deleted from the index after the timer expires
 - the timer is reset with every TAU received from the UE

- Introduction
- Improved HTTP Caching Method
- Distributed Caching Architecture
- Distributed Cache Operation
- Summary

Distributed Cache Operation

- 1. Client HTTP request
- 2. Forwarding
- 3. Server HTTP response
- 4. Header analyzed, local copy available at one sharing client/UE
- 5. HTTP request (local copy)
- 6. HTTP response
- 7. HTTP response to client
- 8. Abort of HTTP transfer

- Introduction
- Improved HTTP Caching Method
- Distributed Caching Architecture
- Distributed Cache Operation
- Summary

Summary

- Novel approach for distributed cooperative caching
- The approach is based on three main concepts:
 - hash-based resource identification
 - distributed client-side caching
 - modified cache operation using smart proxies for cache control
- The approach is not limited to mobile networks, it could also be applied in fixed network scenarios

Questions?