Uplink System Performance of LTE-Advanced Relay Deployments in Different Propagation Environments

Ömer Bulakci^{1,2}, Abdallah Bou Saleh², Simone Redana¹, and

Jyri Hämäläinen²

1. Nokia Siemens Networks, NSN-Research, Radio Systems, Munich, Germany 2. Aalto University School of Electrical Engineering, Helsinki, Finland (formerly *Helsinki University of Technology-HUT*)

09.05.2012

17. VDE/ITG Workshop on -Mobile Communications-

Nokia Siemens Networks

Goal

- Uplink Radio Resource Management Strategies
 - Power Control
 - Resource Sharing & Co-scheduling
 - Relay Cell Range Extension
- Joint Optimization: Taguchi's Method
- Uplink Performance Evaluation
 - Propagation Environments
 - 3GPP Case 1 ISD 500m
 - 3GPP Case 3 ISD 1732m
- Conclusions
- 2 Ömer Bulakci

Goal

Analyze uplink system performance of LTE-A Relay Deployments

Engineering

Goal

Uplink Radio Resource Management Strategies

- Power Control
- Resource Sharing & Co-scheduling
- Relay Cell Range Extension
- Joint Optimization: Taguchi's Method
- Uplink Performance Evaluation
 - Propagation Environments
 - 3GPP Case 1 ISD 500m
 - 3GPP Case 3 ISD 1732m
- Conclusions

Power Control in Uplink

- LTE Rel.8 power control scheme applied in LTE-Advanced relay deployment for Physical Uplink Shared Channel (PUSCH) & Relay Specific PUSCH (R-PUSCH) *.
- Power control parameters are optimized to:
 - increase cell edge performance or system capacity.
 - mitigate inter-cell interference which increases due to RN deployment.

adjust receiver dynamic ranges at eNB and RNs.

* Applicability investigated in "Ö. Bulakci et al., Impact of Power Control Optimization on the System Performance of Relay based Heterogeneous Networks, Journal of Communications and Networks, 2011". Nokia Siemens **Aalto University** Networks School of Electrical

Engineering

5 Ömer Bulakci

LTE Rel.8 Fractional Power Control

The Open-Loop Power Control formula is applied.

$$P = \min\{P_{\max}, P_0 + 10 \cdot \log_{10} M + \alpha \cdot L\}$$

- P_{max}: Max allowed UE/RN transmit power [23/30 dBm]
- P_0 : Parameter to control received SNR target [dBm]
- M : # of PRBs allocated to one UE/RN
- α : Cell specific path loss compensation factor
- L : Downlink path loss estimated at UE/RN [dB]
- $\alpha \in [0.0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]$
 - $\geq \alpha = 0.6$ Fractional Power Control (FPC)

FPC improves the performance of cell center users by inducing an acceptable inter-cell interference.

 P_0 can be selected from the set of [-116:1 dB: P_{max}] in dBm.

OPTIMIZE: P_0 values on all links

Relay-UEs @ Access Link Macro-UEs @ Direct Link

@ Backhaul Link

Nokia Siemens Networks

ol of Electrical

Enaineerina

RNs @ Backhaul Link

Goal

- Uplink Radio Resource Management Strategies
 - Power Control
 - Resource Sharing & Co-scheduling
 - Relay Cell Range Extension
- Joint Optimization: Taguchi's Method
- Uplink Performance Evaluation
 - Propagation Environments
 - 3GPP Case 1 ISD 500m
 - 3GPP Case 3 ISD 1732m
- Conclusions

Resource Sharing & Co-scheduling *

Uplink Performance Evaluation, Wiley ETT, 2012".

Uplink Radio Resource Management Strategies

- Power Control
- Resource Sharing & Co-scheduling
- Relay Cell Range Extension
- Joint Optimization: Taguchi's Method
- Uplink Performance Evaluation
 - Propagation Environments
 - 3GPP Case 1 ISD 500m
 - 3GPP Case 3 ISD 1732m
- Conclusions

Relay Cell Range Extension (CRE)

Motive

- High competition on resources in the macrocell
- Inefficient use of resources in the under-loaded RN cell

Methodology

- DeNB Transmit power reduction on direct link.
- Biasing in cell selection and handover thresholds

• Outcome

- Better resource distribution
- Bring more UEs closer to an access point

Distance from eNB

School of Electrical

Engineering

Nokia Siemens Networks

* "A. Bou Saleh et al., On Cell Range Extension in LTE-Advanced Type 1 Inband Relay Networks, submitted journal paper, 2012".

Motivation for CRE in Uplink

 DeNBs and RNs have different Tx power in DL, while UE Tx power in UL is the same.

OPTIMIZE:

Value of Effective Biasing

11 Ömer Bulakci

Goal

- Uplink Radio Resource Management Strategies
 - Power Control
 - Resource Sharing & Co-scheduling
 - Relay Cell Range Extension
- Joint Optimization: Taguchi's Method
- Uplink Performance Evaluation
 - Propagation Environments
 - 3GPP Case 1 ISD 500m
 - 3GPP Case 3 ISD 1732m
- Conclusions

Nokia Siemens Networks

Joint Optimization: Taguchi's Method Methodology Overview *

• Let x_t where t = 1, 2, 3, 4 denote configuration parameters and γ be any performance measure. The optimization problem is:

$$\{x_1^{(\text{opt})}, x_2^{(\text{opt})}, x_3^{(\text{opt})}, x_4^{(\text{opt})}\} = \underset{x_1, x_2, x_3, x_4}{\arg \max} y(\gamma)$$

where $y(\gamma)$ is the optimization function.

- Assume each parameter can take N values. To find the global optimum, we need to test all N⁴ combinations.
- Instead, Taguchi's method extracts a subset of parameter combinations from the full search space to select nearly-optimal parameter setting.
- Taguchi's method employs an iterative algorithm and different parameter combinations are evaluated using a *performance metric*.
- <u>Opinion:</u> Taguchi's method requires a small number of input parameters (3), and hence it is comparatively easier to be utilized than, e.g. Simulated annealing.

* Details in "Ö. Bulakci et.al., Automated Power Uplink Power Control Optimization in LTE-Advanced Relay Networks, submitted journal paper, 2012". Alto University Nokia Siemens Networks

Electrical

Ingineering

Joint Optimization: Taguchi's Method Performance Metric

 Conventional performance metrics: 5%-ile, 50%-ile UE TP CDF levels.

 In our example, we utilize a new performance metric: weighted arithmetic mean of the conventional metrics.

Goal

- Uplink Radio Resource Management Strategies
 - Power Control
 - Resource Sharing & Co-scheduling
 - Relay Cell Range Extension
- Joint Optimization: Taguchi's Method

Uplink Performance Evaluation

- Propagation Environments
- 3GPP Case 1 ISD 500m
- 3GPP Case 3 ISD 1732m
- Conclusions

Nokia Siemens Networks

Propagation Environments

Goal

- Uplink Radio Resource Management Strategies
 - Power Control
 - Resource Sharing & Co-scheduling
 - Relay Cell Range Extension
- Joint Optimization: Taguchi's Method

Uplink Performance Evaluation

- Propagation Environments
- 3GPP Case 1 ISD 500m
- 3GPP Case 3 ISD 1732m
- Conclusions

Nokia Siemens Networks

Uplink Performance Evaluation System Model / Simulation Parameters

(No CRE)

	System Layout	19 tri-sectored sites	
System Parameters	Bandwidth	10 MHz	
	Traffic Model	Full Buffer	
	Noise PSD	-174 dBm/Hz	
	Shadowing	σ _{macro} = 8 dB	
		σ _{rn cell} = 10 dB	
		σ _{relay link} = 6 dB	
	Penetration Loss	20 dB for UEs only	
	Highest MCS (AMC)	64-QAM – R: 9/10	
	Resource partitioning	Reuse 1	

eNB Specific	Antenna configuration	2 Tx, 2 Rx	
	Transmit Power	46 dBm	
	Antenna gain	14 dBi	
	eNB Antenna Pattern (Horizontal)	-min[12 (θ / θ_{3dB}) ² , A_m] θ_{3dB} =70° & A_m =25 dB	

Total RN coverage area [%] **RN** Tiers Number Scenario of RNs ISD per sector ISD 500 m 1732 m 21 Sc 1 7 19.5 Sc 2 1 Tier 4 32.8 35.3 Sc 3 4 29.5 43.5 Sc 1 33 14 36.5 2 Tiers Sc 2 10 65 61.5 Sc 3 10 45.5 67

UE Specific	Antenna configuration	1 Tx, 2 Rx	
	Antenna gain	0 dBi	
	Noise Figure	9 dB	
	UE drops	Uniform - 25 UEs per sector – Indoor	

RN Specific	Antenna configuration	2 Tx, 2 Rx	
	Transmit Power	30 dBm	
	RN-UE antenna gain	5 dBi	
	RN-eNB antenna gain	7dBi	
	Noise Figure	5 dB	
	Aalto Schoo Engin	ol of Electrical	

Reference Scenario: Before Optimization

- Power control parameters obtained in macrocell-only deployments are applied on all links.
- No Relay Cell Range Extension.
- The number of backhaul subframes is determined according to the average RN coverage area.

Ex: $35.3\% \rightarrow 4$ Backhaul Subframes

No Co-scheduling.

19

Uplink Performance Evaluation 3GPP Case 1 – ISD 500m (Urban)

• RN Deployments significantly enhance the system performance over macrocellonly deployments especially at low throughput regime.

• With more RNs performance can be further enhanced.

• Joint RRM optimization yields significant gains over "Before Optimization".

• Least overall gains are observed in Scenario 1 (Sc1) due to NLOS connections.

• Higher gains are observed in Scenario 2 (Sc2) and Scenario 1 (Sc1) thanks to the LOS components in the path loss model.

• Relative gains are <u>lower</u> in Scenario 3 (Sc3) w.r.t. Scenario 2 (Sc2) due to increased performance of macrocell-only.

All Gains w.r.t. macrocell-only deployments.

Uplink Performance Evaluation 3GPP Case 3 – ISD 1732m (Suburban)

• RN Deployments can effectively cope with coverage limitation of suburban scenarios and boost the performance especially at low throughput regime.

• With more RNs overall performance can be further enhanced.

• Joint RRM optimization yields significant gains over "Before Optimization".

 Least overall gains are observed in Scenario 1 (Sc1) due to NLOS connections.

• Higher gains are observed in Scenario 2 (Sc2) and Scenario 1 (Sc1) thanks to the LOS components in the path loss model.

• Relative gains are <u>higher</u> in Scenario 3 (Sc3) w.r.t. Scenario 2 (Sc2) due to lower performance of macrocell-only & LOS component on the relay link.

All Gains w.r.t. macrocell-only deployments.

Goal

- Uplink Radio Resource Management Strategies
 - Power Control
 - Resource Sharing & Co-scheduling
 - Relay Cell Range Extension
- Joint Optimization: Taguchi's Method
- Uplink Performance Evaluation
 - Propagation Environments
 - 3GPP Case 1 ISD 500m
 - 3GPP Case 3 ISD 1732m
- Conclusions

Nokia Siemens Networks

Conclusions

- RN deployments offer significant performance enhancements over macrocell-only deployments
 - Especially at low throughput regime
 - Achieved gains can be significantly different in different propagation environments
 - Least gains are observed when all links are NLOS
 - Higher overall gains are observed when a LOS connection is taken into account.
- The system performance can be further increased when the joint optimization of the proposed RRM strategies is applied.

Engineering

Goal

- Uplink Radio Resource Management Strategies
 - Power Control
 - Resource Sharing & Co-scheduling
 - Relay Cell Range Extension
- Joint Optimization: Taguchi's Method
- Uplink Performance Evaluation
 - Propagation Environments
 - 3GPP Case 1 ISD 500m
 - 3GPP Case 3 ISD 1732m
- Conclusions

Nokia Siemens Networks

Power Control: Automated Optimization Methodology: Taguchi's Method

• Let the variable x_t where t = 1, 2, 3, 4 designate configuration parameters and γ be any performance measure. The optimization problem is:

$$\{x_1^{(\text{opt})}, x_2^{(\text{opt})}, x_3^{(\text{opt})}, x_4^{(\text{opt})}\} = \underset{x_1, x_2, x_3, x_4}{\arg \max} y(\gamma)$$

where $y(\gamma)$ is the overall optimization function.

- **Assume** 4 parameters and each can take 3 values. To find the global optimum, we need to test all $3^4 = 81$ combinations.
- Instead, Taguchi's method uses orthogonal array (OA) that extracts 9 parameter combinations (experiments) from the search space to select nearly-optimal parameter setting.
- > OAs are difficult to construct and your required OA may not exist.
- Hence, we use nearly orthogonal array (NOA):
 - Easier to construct.
 - Can be constructed for any number of experiments
 - Reduces computational complexity.
 - Provides similar performance to an OA.

Power Control: Automated Optimization

Taguchi's Method: Based on OA

Experiment	x ₁	X ₂	X ₃	x ₄	Measured Response	SN Ratio
1	1	1	1	1	У ₁	SN1
2	1	2	2	3	У2	SN2
3	1	3	3	2	У ₃	SN3
4	2	1	2	2	У4	SN4
5	2	2	3	1	У ₅	SN5
6	2	3	1	3	У ₆	SN6
7	3	1	3	3	У ₇	SN7
8	3	2	1	2	У ₈	SN8
9	3	3	2	1	У ₉	SN9

1- SN Ratio = 10 $\log_{10} (y_i^2)$.

- 2- Compute the average SN ratio for each level of a parameter. For instance, the mean SN ratio for x₁ at level 1 is computed by averaging over SN1, SN2 and SN3.
- 3- Determine the level of each parameter having the highest SN ratio.
- 4- Having determined the level, the best value of a parameter is determined using the mapping function that assigns a value for each level.
- 28 Ömer Bulakci

ool of Electrical

Power Control: Automated Optimization

Taguchi's Method: Optimization Procedure

Nokia Siemens

Networks

Engineering

Power Control: Automated Optimization Taguchi's Method: Construct the proper NOA

- The number of columns in NOA is equal to the number of configuration parameters.
- The number of experiments *N* and levels *s* are input parameters that need to be selected.
 - Typically, the higher *N* or *s* the better the performance.
 - However, the computational complexity increases with increasing N
 - \rightarrow Trade-off between performance and complexity.

Power Control: Automated Optimization Methodology: Taguchi's Method

- In order to perform the experiments, the levels of the NOA should be mapped to testing values.
- In each iteration, the levels of NOA are mapped to new testing values based on the candidate solution found in previous iteration.
- **Example:** Consider $P_{\text{max}}^{\text{relay-UE}}$ [7, 23] dBm and an NOA having s = 9 levels. In the first iteration,

Power Control: Automated Optimization Methodology: Taguchi's Method

- After applying Taguchi's method, new values are selected for each parameter.
- Then, the termination criterion Δ < ε is checked. If not satisfied, the optimization range for each parameter is reduced.

