Lossless RTCM-SC104 data compression for broadcasting via satellite links

Rafał Mielniczuk^{1,2}, Andreas Engstler¹, Harald Gebhard¹

1.Univ. of Applied Sciences, Konstanz 2.AGH Univ. of Science and Technology, Kraków

10 May 2012

Introduction

Error sources in GNSS and relative positioning techniques

- error sources:
 - satellite orbit
 - satellite clock
 - ionosphere
 - troposphere
- reference stations:
 - precisely located
 - generate periodically corrections
 - single or network

GNSS data dissemination techniques

- mobile Internet connectivity
 - NTRIP
 - cheap data transmission
 - requires bidirectional connection(authentication)
 - does not provide data security
 - not available in rural areas
- satellite links:
 - continental signal coverage
 - unidirectional ideal for dissemination to the masses because of cheap reception hardware
 - more expensive than terrestrial links,
 e.g. 512 kbps - 5000 euro per month

Target system, motivation

Motivation

- expensive satellite link capacity
- investigation of RTCM SC-104 format

Expected results

- reduction of transmission costs
- reduction of serialization delay

Problem description

Results for universal compression methods

RTCM SC-104 format usage

- 200 streams from BKG in Germany inspected
- RTCM 2 12%
- RTCM 3 88%
- type 18 and 19 23.5%
- type 1004 and 1012 59.7%
- RTCM 3 format is at least 40% less verbose than RTCM 2, parity bits, "6 of 8" format

RTCM SC-104 format

- defined on the presentation layer
- composed from a sequence of data fields
- various data fields encoded with an different number of bits
- every message contains at least information about type and reference station ID
- two main kinds of RTCM messages

Compression construction

Data representation

- 3 dimensional representation of data in time stamp and time window
- easy navigation using an index
- data fields compression in a time stamp on the horizontal plane
- compression in time window for different space vehicles
- compression task reduced to a compression of vectors

Compression in a time stamp

- bad performance of dictionary methods
- methods used
 - optimal coding
 - modal value
 - dedicated for data field
- row-by-row or column-by-column
- a profile for every message type

Message type	18	19	1004	1012
Space savings	59.1%	58.2%	24.6%	26.2%

Compression in a time window

- differential coding used, e.g., in video codecs
- only difference between successive frames is sent
- works in real time
- satellite list update

Time

Group of frames

- some values change linearly
- linear predictor
- outlier detection

Results

Space savings of I and P frames

Results

Space savings within a time window

Results

Packetizing

	N bits		ts	10 bi	12 bits	1 bit				
header	compression mask		time stamp		type	I/P				
	_						_			
i-frame	CRC	padding	FN	D		-1	D	sate ll ite mask	HDF	header
								NxS		
p-frame	CRC	padding	DFN	UDFN		DF1	UDF1	satellite update	UHDF	header
								>=12 bits		

۰	defined on the presentation laver	no. of	I-Frame	P-Frame
•	other ISO/OSI lavers deliver	streams	size B	size B
Ŭ	information about:	1	127	52
		10	1034	554
	 data integrity 	13	1356	725
	• size	38	3982	2141
	 lost packets 	100	10439	5651
	 right packet ordering 	100	10105	0001

Summary and suggestions for future research

- defined compression/decompression construction
- found and implemented compression techniques for most frequently sent messages
- performed offline tests on two data sets
- check if numerical calculations with precise orbital information improve compression ratio
- perform integration and online tests
- perform field tests with satellite

Summary

The End

Thank you for your attention!