

LTE system performance optimization by RED based PDCP buffer management

Umar Toseef^{1,2}, Thushara Weerawardane², **Andreas Timm-Giel²**, **Carmelita Görg¹** ¹ComNets, University of Bremen, Bremen, Germany ²ComNets, TUHH, Hamburg, Germany

umr@comnets.uni-bremen.de

TZi Contents

- Background
- Problem statement
- Proposed solution
- LTE simulator and simulation parameters
- Simulation results and analysis
 - Case 1: Prioritizing HTTP users over FTP user
 - Case 2: Mixing HTTP and FTP users in same priority class
- Summary and conclusions

2

TZi Background – LTE downlink data transmission

TZi Background – LTE inter-eNB handover procedure

Step 4

Step 6

TZi Problem statement

- Per bearer PDCP buffers at eNodeB hold downlink data before it is scheduled by MAC scheduler for transmission over radio interface.
- PDCP buffer occupancy affects X2 data volume and inter-eNB handover completion time
- PDCP buffer occupancy should be kept at minimal required level
 - To reduce X2 traffic volume and save transport network bandwidth
 - To reduce handover completion time during inter-eNB handover
 - To reduce PDCP buffering delay and hence improve packet end-to-end delay
- However reducing PDCP buffer to an arbitrarily small capacity could harm user application performance due to packet drops.

TCP throughput $\leq \frac{MSS}{RTT\sqrt{PLR}}$

An efficient buffer management scheme is needed to keep PDCP buffer occupancy at an optimum level.

TZi Proposed solution

ersität Bremen

- Deploy following buffer management scheme and tune the configuration parameters to achieve optimum PDCP buffer occupancy
 - Random Early Detection (RED) based scheme
- Performance of above scheme is compared against simple tail drop scheme with limited buffer capacity.

TZi LTE system level simulator in OPNET

TZi Simulation configuration parameters

User Profile Definition						
Number of active users per cell	60					
Number of cells per eNB	1					
FTP traffic data	File size: constant 5M Byte					
Web (HTTP) traffic data	Number of pages per session: 5 pages Average page size: 100K Bytes Number of objects in a page: 1					
VoIP traffic data	GSM EFR codec (12.2 kbps) Silence suppression: off Call length: 90 sec					
User Mobility Model	Random Direction (50km/h)					
Network Configuration						
Cell Bandwidth	10 MHz					
Handover	Disabled					
MAC Scheduler	Round Robin					
S1 link capacity	100 Mbps (Ethernet 100BaseX)					
Per bearer PDCP buffer capacity	Configurable (30KB, 50KB & 100KB)					
RED parameters for PDCP buffer management	threshold _{min} : 33%, threshold _{max} : 100% Pa: 0%, Pb: 5%					
Simulation duration	2000 sec					

Simulation results and analysis

Case 1: Prioritizing HTTP users over FTP user

- Moderate offered traffic load
- High offered traffic load

Case 2: Mixing HTTP and FTP users in same priority class

- Moderate offered traffic load
- High offered traffic load

TZi PDCP buffer occupancy & TCP delay – CDF curves

PDCP buffer occupancy TCP segment delay Prob [<= value] of PDCP Layer.Total Shared Buffer Size cell 1 (bytes) Prob [<= value] of TCP.Segment Delay (sec) 1.2 1.2 1.1 1.1 1 0.9 0.9 0.8 0.8 30 Kbytes - RED 30 Kbytes – RED 0.7 0.7 30 Kbytes – Tail drop 30 Kbytes – Tail drop 0.6 0.6 50 Kbytes – RED 50 Kbytes - RED 0.5 0.5 50 Kbytes – Tail drop 50 Kbytes – Tail drop 0.4 0.4 100 Kbytes - RED 100 Kbytes – RED 0.3 0.3 100 Kbytes - Tail drop/ 100 Kbytes – Tail drop/ 0.2 Unlimited buffer capacity Unlimited buffer capacity 0.2 -0.1 0.1 -0-0.1 02 0.3 0.5 a.0 0.7 0.5 1.5 2.5 3.5 3 TCP segment delay (sec) PDCP buffer occupancy (Kbytes) value value (x100,000)

10

TZi Simulation result statistics

Per bearer PDCP buffer capacity (KB)	Mean PDCP buffer space usage (KB)	Total PDCP packet drops	Mean TCP segment delay – FTP DL (msec)	Mean FTP file download time (sec)	Mean HTTP page download time (sec)			
unlimited	61.7	0	115	9.41	0.54			
Tail drop								
100	61.7	0	115	9.41	0.54			
50	48.0	994	094	10.01	0.54			
30	29.5	5,078	051	11.21	0.53			
RED								
100	43.7	653	082	10.10	0.53			
50	30.9	2,033	058	11.43	0.56			
30	24.1	5,080	044	13.28	0.70			

11

Simulation results and analysis

Case 1: Prioritizing HTTP users over FTP user

- Moderate offered traffic load
- High offered traffic load

Case 2: Mixing HTTP and FTP users in same priority class

- Moderate offered traffic load
- High offered traffic load

TZi PDCP buffer occupancy & TCP delay – CDF curves

PDCP buffer occupancy

TCP segment delay

ComNets

13

Per bearer PDCP buffer capacity (KB)	Mean PDCP buffer space usage (KB)	Total PDCP packet drops	Mean TCP segment delay – FTP DL (msec)	Mean FTP file download time (sec)	Mean HTTP page download time (sec)				
unlimited	1450	0	2,189	113.17	0.68				
Tail drop									
100	932	4,442	1,342	112.12	0.68				
50	508	11,941	763	115.36	0.68				
30	296	20,170	475	121.32	0.68				
RED									
100	528	6,754	746	114.21	0.68				
50	323	14,810	520	117.28	0.78				
30	227	24,673	361	119.56	0.94				

Simulation results and analysis

Case 1: Prioritizing HTTP users over FTP user

- Moderate offered traffic load
- High offered traffic load

Case 2: Mixing HTTP and FTP users in same priority class

- Moderate offered traffic load
- High offered traffic load

Per bearer Mean PDCP PDCP buffer buffer		Total Mean TCP PDCP segment packet delay –		Mean FTP file download time (sec)		Mean HTTP page download time (sec)		
capacity (Kbytes)	occupancy (Kbytes)	drops	FTP QCI9 (msec)	QCI8	QCI9	QCI8	QCI9	
unlimited	619	0	123	9.29	9.45	0.55	0.55	
Tail drop								
100	619	0	123	9.29	9.45	0.55	0.55	
50	488	1,042	096	9.74	10.79	0.55	0.59	
30	312	5,088	056	11.34	11.81	0.54	0.64	
RED								
100	389	530	066	8.76	9.62	0.53	0.53	
50	325	2,085	064	11.74	11.91	0.59	0.60	
30	231	4,865	042	12.44	13.15	0.65	0.74	

Moderate offered traffic load

Per bearer buffer PDCP	rer Mean Total Mean PDCP PDCP TCP buffer packet segment		Mean FTP file download time (sec)		Mean HTTP page download time (sec)				
capacity (Kbytes)	occupancy (Kbytes)	drops delay – FTP QCI9	QCI8	QCI9	QCI8	QCI9			
unlimited	1,090	0	4.284 sec	20.43	233.6	0.73	6.76		
Tail drop									
100	767	3,782	3.010 sec	21.00	225.2	0.74	6.44		
50	494	8,626	2.140 sec	21.17	249.5	0.72	6.69		
30	311	22,914	1.251 sec	22.48	245.2	1.09	6.60		
RED									
100	513	4,458	2.124 sec	20.87	214.2	0.71	6.81		
50	353	11,030	1.517 sec	21.90	238.8	0.84	6.8 5		
30	251	23,809	0.872 sec	21.77	203.1	1.06	6.91		

High offered traffic load

TZi Summary and conclusions

- An optimal PDCP buffer occupancy helps achieving shorter inter eNB handover time and reduced X2 traffic volume
- PDCP buffer with arbitrarily large capacity creates high buffer occupancy
- With the help of a PDCP buffer management scheme e.g. RED, discard timer etc. reduce buffer occupancy up to 60%.
- Proper tuning of parameters of buffer management scheme is required in order to achieve low buffer occupancy without significant loss in user application performance.
- A practical range of tuning parameter values is also proposed to ease the system performance optimization task when using discard timer scheme.
- As a next step more sophisticated queue management scheme will be applied.

T Thanks for your attention

Questions and comments are welcome!

