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I. INTRODUCTION

This paper presents our approach for making FPGA ac-
celerators accessible to software (SW) programmers. It is
intended as a starting point for collaborations with other
groups pursuing similar objectives. We report on our current
SAccO platform (Scalable Accelerator platform Osnabrück)
[1], [2] and the planned project extending this platform.

SAccO is used for accelerating parts of multi-process
streaming applications implemented on a standard PC. In
SAccO, the portable and scalable accelerators are implemented
on standard FPGA boards connected via PCI-Express (PCIe)
[3] and designed as parameterizable RT-level VHDL hardware
(HW) components. To simplify application development, a fast
and powerful PCIe controller capable of DMA was developed
for Xilinx FPGAs, together with an efficient driver. The
controller is combined with a high-level communication API
which uses the same function calls for SW-SW communication
via sockets and SW-HW communication via PCIe.1 This API
enables simple process integration and also allows for pure SW
applications (on PCs without FPGA extension cards) without
changing the processes’ source code.

SAccO also comprises a method to automatically select
a process’ optimal degree of parallelism on an FPGA for a
given hardware platform, i. e. to generate a hardware design
which uses the available FPGA resources and communication
bandwidth between the PC and the FPGA optimally. Hence
SW programmers can easily adjust the VHDL components to
new platforms of varying size, performance and cost.

Due to recent advances in high-level synthesis (HLS) [4]
it now becomes feasible to replace the VHDL components
by HLS-generated HW designs. This will be explored in the
course of this new project. Then the SAccO PCIe interface
and API can be used by SW engineers without HW design
knowledge. However, even with HLS, a lot of difficult manual
fine tuning is required. Different loop unrolling or tilling
parameters result in different size/speed trade-offs, cf. [5].
Furthermore, e. g. the ROCCC2.0 HLS compiler [6] makes
the user select the communication bandwidth for a HW kernel,
a platform-specific parameter which is normally not exposed
to SW programmers. Therefore we will combine HLS with

1The SAccO SW and HW components are freely available upon request.

an automatic HW/SW partitioning and optimization algorithm
which selects these parameters.

The remainder of this paper is organized as follows: The
next section describes the background of our approach and
related work. Sect. III outlines the combination of SAccO
with an HLS system and a new optimization method. Finally,
Sect. IV summarizes the paper.

II. BACKGROUND

The performance of today’s standard PCs (based on the
x86 architecture) is not sufficient for computation-intensive
applications. However, using ASICs or expensive supercom-
puters is often infeasible. Off-the-shelf FPGA boards are
a reasonably priced alternative for upgrading standard PCs.
Using them, computation-intensive application kernels can be
mapped to fast coprocessors and configured into the FPGAs,
thereby almost reaching the performance levels of expensive
specialized hardware.

Unfortunately, these FPGA boards have not yet been widely
used for accelerating standard PC programs. One reason is the
fact that designing digital circuits is much more difficult and
time-consuming than developing software [7]. To overcome
this productivity gap, high-level design tools must be used.
HLS has been researched for a long time [8], [9] and recently
received increased interest due to improved tools [4].

Furthermore, most hardware accelerators are hand-
optimized ad-hoc solutions for one specific FPGA board.
Using other FPGA boards requires time-consuming porting
or complete rewriting. Hence, the high development effort is
not worthwhile if, e. g. for cost reasons, FPGAs of different
sizes and vendors shall be used in different workplaces of a
company. The lack of portability and scalability has not been
researched thoroughly though it is recognized as a major
obstacle for widespread use of FPGAs [10]. There are only a
few publications on portable and scalable FPGA design, e. g.
[11]. They also suggest implementations with varying degrees
of parallelism, but do not present a method for automatically
determining the hardware parameters as in our approach.

Finally, the PCIe interfaces provided by the FPGA board
vendors only provide base functionality on a low level [12],
[13]. The Speedy PCIe Core [14] and the RIFFA2.0 [15]
projects provide high-level PCIe interfaces. However, they are
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only available under restricted licenses and do not use the
same API for SW-SW and SW-HW communication.

For these reasons, in the HPVis project at Osnabrück Univer-
sity of Applied Sciences2, we devised methods for designing
portable and scalable hardware accelerators and implemented
the PCIe interface, resulting in the SAccO platform.

III. AUTOMATIC HIGH-LEVEL PARTITIONING AND
SCALING USING HLS

In the new approach, the applications are based on multi-
process streaming SW as in the HPVis project. However,
instead of manually porting selected processes to VHDL, we
will use HLS for implementing some processes in FPGA
hardware. This will require some specific extensions. E. g.,
the SAccO API for process communication over streaming
channels must be integrated in the HLS system. For this
purpose, several commercial and research HLS systems will
be evaluated.

In SAccO [2], an optimal replication factor R is automati-
cally computed for one HW kernel (corresponding to one pro-
cess). R determines the optimal parallelization degree from the
available FPGA resources and the given PCIe communication
bandwidth which differ vastly for different FPGA devices and
PC platforms.

This method will be generalized to optimize all processes
of an application. Therefore, the processes P and their com-
munication channels C are represented as a data-flow graph
DFG = (P,C). A combinatorial optimization algorithm will
be devised which

• selects the nodes (processes) to be implemented on the
FPGA (hardware/software partitioning) and

• selects a replication (unrolling/tiling) factor R which de-
termines the degree of parallelism used for each hardware
node (optimal scaling).

As opposed to early HW/SW partitioning methods, e. g. [16],
which maximized performance and minimized the number of
data word transfers, this algorithm’s objective is to maximize
the throughput from the DFG’s source to its sink node. Several
interdependent constraints restrict the solution space:

• All software processes share the CPU performance.
• All hardware processes share the FPGA resources. For

replication factors R > 1, the performance is increased,
but so are the resource requirements.

• The process performance limits the throughput of its
connected communication channels.

• The throughput of a channel is determined by the mini-
mum of the channel bandwidth, the source’s production
rate and the sink’s consumption rate.

• The channel throughput in turn limits the performance of
its connected processes.

• All channels between SW and HW processes must share
the limited PCIe bandwith.

2HPVis: High-Performance Processing and Visualization of High-Volume
Data, cf. http://www.ecs.hs-osnabrueck.de/hpvis.html, sup-
ported by the European Regional Development Fund and the Lower Saxony
State Government/Germany.

This problem is related to the maximum-flow problem but
is more complicated since the flow depends on the processes’
performance, and the bandwidth is variable (depending on
R). An efficient solution algorithm (e. g. a maximum-flow
or integer linear-programming algorithm) will be developed.

Apart from this algorithmic work, methods for extracting the
system parameters (process performances, channel bandwidths
etc.) by profiling or directly from the software compiler’s and
the HLS system’s output must be developed. The scheduling
of the channel communication over the SW/HW boundary will
be implemented by a method similar to [17].

IV. SUMMARY

This paper presented a summary of our work on the free
SAccO platform which simplifies the integration and reuse of
hardware kernels for software programmers. Next, we outlined
how this platform can be combined with High-Level Synthesis
systems and how an extended optimization algorithm performs
hardware/software partitioning and hardware optimization.
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