
978-1-4799-2079-2/13/$31.00 c©2013 IEEE

A Framework for PC Applications with Portable
and Scalable FPGA Accelerators

Markus Weinhardt, Alexander Krieger, Thomas Kinder
Osnabrück University of Applied Sciences, Osnabrück, Germany

m.weinhardt|alexander.krieger|t.kinder@hs-osnabrueck.de

Abstract—This paper presents a novel framework for imple-
menting portable and scalable data-intensive applications on
reconfigurable hardware. Instead of using expensive ”reconfig-
urable supercomputers”, we focus our work on standard PCs and
PCI-Express extension cards featuring Field-Programmable Gate
Arrays (FPGAs) and memory. In our framework, we exploit task-
level parallelism by manually partitioning applications into sev-
eral parallel tasks using a communication API for data streams.
This also allows pure software implementations on PCs without
FPGA cards. If an FPGA accelerator is present, the same API
calls transfer data between the PC’s CPU and the FPGA. Then,
the tasks implemented in hardware can exploit instruction-level
and pipelining parallelsims as well. Furthermore, the framework
consists of hardware implementation rules which enable portable
and scalable designs. Device specific hardware wrappers hide
the FPGA’s and board’s idiosyncrasies from the application
developer.

We also present a new method to automatically select a task’s
optimal degree of parallelism on an FPGA for a given hardware
platform, i. e. to generate a hardware design which uses the
available communication bandwidth between the PC and the
FPGA optimally. Experimental results show the feasibility of our
approach.

I. INTRODUCTION

The perfomance of today’s standard PCs (based on the
x86 architecture) is not sufficient for computation-intensive
applications. However, using ASICs or expensive supercom-
puters is often infeasible. Off-the-shelf FPGA boards are
a reasonably priced alternative for upgrading standard PCs.
Using them, computation-intensive application kernels can be
mapped to fast coprocessors and configured into the FPGAs,
thereby almost reaching the performance levels of expensive
specialized hardware.

Unfortunately, these FPGA boards have not yet been widely
used for accelerating standard PC programs. One reason is the
fact that designing digital circuits is much more difficult and
time-consuming than developing software [1]. Furthermore,
most hardware accelerators are hand-optimized ad-hoc solu-
tions for one specific FPGA board. Using other FPGA boards
requires time-consuming porting or complete rewriting. Hence,
the high development effort is not worthwhile if, e. g. for cost
reasons, FPGAs of different sizes and vendors shall be used
in different workplaces of a company.

The first problem, the lack of mature high-level synthesis
(HLS) methods, has been researched intensively [2], [3],
but no solutions mature enough for industrial applications
are available yet. Therefore we do not use HLS systems

nor automatic hardware/software partitioning methods (which
require HLS) in this work.

Only a few research projects tried to solve the second
problem mentioned above, the lack of portable and scalable
hardware accelerators, though it is recognized as a major
obstacle for widespread use of FPGAs [4]. We aim to tackle
this more manageable problem in the context of the HPVis
project at Osnabrück University of Applied Sciences.1

Our approach is based on generic, device-independent hard-
ware components modeled in standard hardware description
languages, e. g. register-transfer level VHDL.2 The goal is to
develop a hardware-accelerated multi-process application only
once and automatically adjust it to FPGA boards of varying
size, performance and cost. The boards communicate with the
host PC via PCI-Express (PCIe) [5].

In HPVis, the applications must also run on PCs without
FPGA cards. This additional flexibility is achieved by a stan-
dard API which uses socket communication between software
processes and - if an FPGA card is available - PCIe-based
host communication including hardware wrappers for the PCIe
endpoint on the FPGA boards.

The hardware platforms differ vastly (more than an order
of magnitude) in the available PCIe bandwidth due to the
used FPGA, the number of PCIe lanes, the PCI chipset and
other factors. Furthermore, the FPGAs differ significantly in
the available chip area, but not as much in the achievable
design frequency. Therefore, if different FPGA boards are to
be used for the same application, a big mismatch between
the bandwidth of the PCIe interface and the FPGA design
can occur and should be compensated. We suggest to adjust
the hardware parallelism to match the available bandwidth
for suitable algorithms. Our method computes the optimal
parallelization degree automatically from the available FPGA
resources, the PCIe bandwidth and some application-specific
metrics. Using it, the best hardware implementation for the
given PC/FPGA system is generated.

The remainder of this paper is organized as follows: Sec-
tion II summarizes the related work. Then, our acceleration
framework and the automatic system optimization method
are presented in sections III and IV, respectively. Finally,

1HPVis: High-Performance Processing and Visualization of High-Volume
Data, cf. http://www.ecs.hs-osnabrueck.de/hpvis.html.

2Note that parts of our approach will also be applicable to HLS-based
design once the performance of circuits generated by HLS systems is
satisfactory.

Fig. 1. Communicating parallel tasks T1-T3 accessing data on a hard disk
drive (HDD).

section V summarizes our experimental results, and section VI
concludes the paper and presents an outlook on future work.

II. RELATED WORK

There is no work described in the literature which is directly
comparable to our approach.

On the one hand, there are many publications on paral-
lel high-performance computing, e. g. on applications using
the MPI interface [6]. However, these applications cannot
easily be ported to reconfigurable computers. On the other
hand, high-performance reconfigurable applications are mainly
implemented on reconfigurable supercomputers [7]. These
systems are built from specialized modules consisting of
CPUs, FPGAs and memory which are combined by high-speed
connections [8], [9]. However, these systems are expensive and
use proprietary core services, i. e. software APIs and hardware
wrappers, to access the accelerator resources [10]. Some of
these systems like those built by Maxeler Technologies [8]
even use an own, proprietary hardware description language.

For standard PCs with standard FPGA boards as targeted in
our project, the authors are not aware of a full core services
implementation. The support packages provided by the board
vendors only provide base functionality on a low level [11],
[12], [13]. Only the Speedy PCIe Core [14] and the RIFFA2.0
[15] projects which were published after we started our project
follow a similar approach to ours also using PCIe.

[16] presents a method for managing task communication
over the software/hardware boundary comparable to our API.
The method schedules the communication automatically.

In general, despite a lot of research in the area of recon-
figurable computing [1], there are only a few publications on
portable and scalable FPGA designs [10], [17], [18]. They also
suggest implementations with varying degrees of parallelism,
but do not present a method for automatically determining the
hardware parameters as in our framework.

III. ACCELERATOR FRAMEWORK

A. Parallel Tasks

Our applications are based on manually implemented com-
municating parallel tasks (or processes) as the example sys-
tem shown in Fig. 1. The base implementation is entirely
implemented in software and therefore runs on any PC with
a single-core or multi-core CPU. The tasks communicate via
data streams (arrows ⇒ in Fig. 1) by using the API defined
in section III-C. For the software implementation, the API
functions are implemented with socket connections.3

3We chose a socket implementation for its simplicity over other options
like MPI [6]. Furthermore, sockets also enable distributed implementations.

Fig. 2. Accelerator Architecture: Standard PC with PCIe cards.

B. Accelerator Architecture

Fig. 2 shows the system architecture with FPGA-based
accelerators for which our framework is intended: a standard
Personal Computer (PC) extended by a standard FPGA board.
Both components communicate through a PCIe bus. PCIe
provides fast and scalable communication. The maximum
bandwidth is determined by the capabilities of both the host
PC and the FPGA board. We do not impose restrictions on
the PCIe lane width (x1 to x8) or protocol generations used.

An application as shown in Fig. 1 is ported to the accelerator
architecture by implementing one or several tasks (e. g. T2 in
Fig. 1) in VHDL on the FPGA. The remaining software tasks
need not be changed. Instead, the functionality of the API
changes if an FPGA board is available. Then the functions
use PCIe communication. If two communicating tasks are both
implemented in hardware, the API calls are replaced by direct
handshakes in hardware.

Ideally, data from the PC’s main memory is streamed
sequentially to and from the FPGA board in parallel to
the hardware processing, thereby hiding the communication
latency. If required, intermediate data is stored in the FPGA’s
Block RAM or in the board’s SDRAM.

On the hardware side, the FPGA components shown in
Fig. 3 are provided by our framework. The PCIe Wrapper
provides a standardized interface for all supported platforms
and must be instantiated in all designs. Depending on the
used FPGA, parts of the PCIe Endpoint Core are provided as
hard cores or implemented as soft cores in the FPGA logic.
The wrapper uses a system clock frequency fsys (fixed for
the individual board and platform architecture, equivalent to
TRN CLK frequency in [13]). In each system clock cycle, a
data packet of a fixed transaction width can be generated or
consumed.

On the other hand, the user logic uses an independent user
clock frequency fuser. Specialized small FIFOs are used to
cross the clock domains. On the wrapper side, their width is
set to the transaction width. But the width on the user logic
side can be set to other values, cf. section IV. Differing FIFO
widths should be reflected by the clock frequencies to achieve
balanced FIFO inputs and outputs. If, e. g., the user side width
of the top FIFO in Figure 3 is half the wrapper side width,
fuser should be twice as fast as fsys in order to consume the
data fast enough.

Fig. 3. FPGA Components.

TABLE I
COMMUNICATION API FUNCTIONS. ALL FUNCTIONS ARE BLOCKING AND RETURN ZERO IF THE TRANSFER WAS SUCCESSFUL.

Data Flow (DF) Transfers

uint8_t WriteDF(uint8_t num, void *pval)
Writes *pval (one 32-bit value) to FPGA user logic’s stream input num or to corresponding socket connection num.

uint8_t ReadDF(uint8_t num, void *pval)
Reads *pval (one 32-bit value) from FPGA user logic’s stream output num or from corresponding socket connection num.

uint8_t StreamWriteDF(uint8_t num, void* pdata, uint16_t size)
Copies a block of size bytes, starting at address pdata, to FPGA user logic’s streaming input port num or to corresponding socket connection
num.

uint8_t StreamReadDF(uint8_t num, void* pdata, uint16_t size)
Copies a block of size bytes from FPGA user logic’s streaming output port num to host memory, starting at address pdata, or from
corresponding socket connection num.

uint8_t StreamReadWriteDF(uint8_t rnum, void* prdata, uint16_t rsize,
uint8_t wnum, void* pwdata, uint16_t wsize)

Concurrently executes StreamWriteDF(wnum, pwdata, wsize) and StreamReadDF(rnum, prdata, rsize), i. e. enables
bidirectional (full-duplex) stream communication over PCIe or sockets.

Coprocessor Memory Accesses

uint8_t WriteMem(uint8_t bank, uint32_t addr, void* pval)
Writes *pval (one 32-bit value) to address addr in memory bank bank on board or FPGA.

uint8_t ReadMem(uint8_t bank, uint32_t addr, void* pval)
Reads *pval (one 32-bit value) from address addr in memory bank bank on board or FPGA.

uint8_t BlockWriteMem(uint8_t bank, uint32_t addr, void* pdata, uint16_t size)
Copies a block of size bytes, starting at main memory address pdata, to memory bank bank on board or FPGA, starting at addr.

uint8_t BlockReadMem(uint8_t bank, uint32_t addr, void* pdata, uint16_t size)
Copies a block of size bytes from memory bank bank on board or FPGA, starting at addr, to main memory, starting at address pdata.

C. Communication API

The API functions defined in Table I (implemented in C)
are used to implement flexible applications which run as
multiple software tasks on a CPU and optionally on an FPGA
coprocessor board. The goal is to use as much identical code
as possible on all platforms. All API functions access data by
a void* pointer regardless of its data type. Note that only
one PCIe transfer per direction can be handled at a time. It
is the user’s responsibility to schedule the PCIe transfers of
the concurrent tasks and to guarantee that no data is modified
while it is being transferred.

We first implemented the functions in the first section of
Table I (Data Flow Transfers). They are used to establish data
streams between the processes. The API checks if an FPGA
board exists and behaves as follows:
• FPGA board available: transfers data to and from stream-

ing ports of the FPGA’s user logic via PCIe. Parameter

num represents the port’s number. The ports use a hand-
shake protocol to synchronize the data flow.

• No FPGA board: transfers data to and from another
CPU task, using socket connections. Parameter num is
converted to a specific IP port number used for this con-
nection, i. e. for each num a separate socket connection is
established. For each API call, a corresponding call with
the same num in another task is required, so that each
Write is synchronized with a Read and vice versa.

For both platforms, single-word transfers (4 bytes) and stream
transfers (directly from/to address pdata) of arbitrary size
(in bytes) are supported. DMA transfers are used for stream
transfers (and for the block memory transfers, see below).
Note that the function StreamReadWriteDF first launches
a DMA write access and then spawns a separate thread which
launches a DMA read access. In this way bidirectional data
flow transfers (full-duplex) are possible. If the block size is

too big to be processed by one PCIe transfer or by one socket
transfer, the API implementation splits the transfer into several
smaller transfers.

Single-word write or read accesses can also be used to
synchronize two processes, e. g. to trigger the execution of
a coprocessor function (on FPGA or CPU) or to wait for its
termination, respectively.

The second section in Table I (Coprocessor Memory Ac-
cesses) are only used if an FPGA board is available. For pure
software implementations, shared memory accesses should be
used instead since copying data does not make sense in this
case. These API functions copy data to or from memory on the
FPGA board, as single-word or block transfers. The parameter
bank is mapped to PCIe BARs (Base Address Registers) [5].
It allows to distinguishes separate memory banks (SRAM or
DRAM) on the FPGA board.

Memory bank 0 is reserved for on-FPGA storage. Depend-
ing on the application at hand, address regions within this bank
(or BAR) are mapped to block RAMs, distributed RAMs or
even single FPGA registers. These registers can be used for
setting function parameters from the host PC or for reading
register values (results) from the FPGA. As opposed to the
single-word data flow transfers, this allows multiple accesses
to the same value. I. e., the accesses are not synchronized with
the FPGA process’ control flow.

Note that the stream and block functions do not specify the
number of bytes transferred at a time. The number depends
on the socket implementation or on the transaction width of
the PCIe wrapper used.

D. Hardware Implementation Rules

In order to ensure design portability, all board and FPGA
specific features are encapsulated in the PCIe wrapper. For the
user logic, we impose VHDL implementation rules similar
to those described in [10]. I. e., no proprietary components
can be directly instantiated and no placement constraints are
allowed. Instead, the synthesis system infers FPGA-specific
features like multipliers, DSP blocks and on-chip memory
automatically. This approach guarantees portability and does
not significantly reduce the achieved performance.

Additionally, a minimum user clock frequency must be set
for all supported platforms. We currently require all designs to
run at fuser = 125 MHz. To synchronize the user logic with
the PCIe data streams, a handshake protocol [19] must be used
at the FIFO interfaces. This is necessary to guarantee correct
functionality since the timing of the PCIe data packets are not
exactly predictable and pipeline stalls may occur. The FIFOs
also buffer values to compensate for varying PCIe speeds due
to bursts, thereby increasing the overall throughput.

For best exploitation of differing FPGA sizes and PCIe
bandwidths, the designs should be composed from Processing
Elements (PEs) which can be replicated to process more data
in parallel, cf. [17], [18]. Therefore, the user logic has a
generic parameter R (replication factor) which causes the
instantiation of R parallel PEs with R parallel data stream
ports. R must be a power of two since it also affects the FIFO

width on the user logic side. Only FIFO widths of powers of
two are feasible for exchanging data with the PCIe wrapper.

Hence the performance of a hardware kernel is scaled by
factor R – but so are the area and bandwidth requirements. In
our framework, the optimal replication factor is automatically
selected as detailed in the next section.

IV. AUTOMATIC SYSTEM OPTIMIZATION

This method automatically selects the optimal degree of
parallelism, i. e. the best replication factor R, for a single hard-
ware task implemented according to the rules stated above in
Section III-D. Since the performance of a task is proportional
to R, we select an implementation with the highest value for R
which does not exceed the given PCIe bandwidth in a system
and which still fits in the given FPGA area.

For automatic parameter selection, the following values
must be available for all supported PC/FPGA combinations:
• APlatform [Slices]: Available FPGA area remaining

when the PCIe wrapper is implemented.4

• TPPCI2F and TPF2PCI [MB/s]: Maximal sustained
PCIe throughputs reached by the PC system. Since PCIe
uses independent channels reaching different speeds for
transfers to and from the FPGA board, they are handled
separately.

Additionally, the designer has to provide the following
information for each hardware kernel:
• APE (FPGA area used by one PE) and AConst (constant

FPGA area for user logic independent of R) [Slices]
Hence the entire FPGA area required by the user logic
is estimated to be A ≈ R · APE + AConst. The values
are not exact since optimzations across block boundaries
may occur.

• CW1toF and CW1fromF [Byte]: Channel width for data
consumed or generated by the kernel, respectively, for
R = 1.

• TP1toF and TP1fromF [MB/s]: Maximal throughputs
supported by user logic for R = 1, in direction to and
from FPGA, respectively.
If the kernel consumes or generates data every cycle,
the throughputs are TP1toF = CW1toF · 119 MB/s or
TP1fromF = CW1fromF · 119 MB/s, respectively, for
fuser = 125 MHz.5 Less frequent accesses result in lower
throughputs.

• Rmax: Largest R supported by the implementation.
E. g., if the PE cannot be replicated at all for a given
task, Rmax is set to 1.

The channel widths and throughputs for multi-PE im-
plementations are computed as CWRtoF = R · CW1toF ,
TPRtoF = R · TP1toF , CWRfromF = R · CW1fromF , and
TPRfromF = R · TP1fromF .

4In the future, a more detailed area metric which separately considers logic,
flipflops, arithmetic and RAM will be used. This will give better estimates
for circuits heavily using specialized resources.

5Note the different definition of MHz and MB: A frequency of 1.048576
MHz is required to achieve 1 MB/s if one byte is transferred every cycle.

TABLE II
PLATFORM PARAMETERS.

Platform APlatform fsys [MHz] TPPCI2F (DMA) TPF2PCI (DMA) TPPCI2F TPF2PCI

SP605 6,701 62.5 137 MB/s 172 MB/s 31.6 MB/s 1.7 MB/s
ML605 37,074 125.0 1099 MB/s 1373 MB/s 30.6 MB/s 4.2 MB/s

TABLE III
APPLICATION KERNEL PARAMETERS.

Kernel (fuser = 125MHz) APE AConst CW1toF TP1toF CW1fromF TP1fromF Rmax

Compression (for L=20) 20 27 2 238 MB/s 4 24 MB/s 4
FIR (for N=6) 7 9 2 238 MB/s 2 238 MB/s 8
Blur 18 79 1 119 MB/s 1 119 MB/s 16
Sobel 453 0 1 119 MB/s 2 238 MB/s 1

Using these numbers, the user logic’s generic parameter R is
automatically computed according to the following equations:

R = min(R1, R2, R3, Rmax)

with R1 = max
n∈N

{
2n|2n ≤ APlatform −AConst

APE

}
R2 = max

n∈N

{
2n+1|2n <

TPPCI2F

TP1toF

}
R3 = max

n∈N

{
2n+1|2n <

TPF2PCI

TP1fromF

}
Here, R1 represents the largest circuit still fitting in the

given FPGA area. R2 and R3 represent the smallest circuits
which require at least the available PCIe bandwidths to and
from the FPGA board, respectively. Implementing more PEs
does not make sense since the circuit is already bandwidth-
limited if R2 or R3 PEs are implemented. Hence, the minimum
of R1, R2, R3 and Rmax represents the fastest feasible circuit
not wasting FPGA resources.

R also determines the widths CWRtoF and CWRfromF

of the FIFO ports on the user logic side. The FIFOs are
instantiated with these generic parameters to automatically
adjust the data stream width between the clock domains.

V. RESULTS

We performed experiments for FPGA acceleration on a
Linux PC (Intel Core i5 CPU). The PC was equipped with
two different FPGA boards, the Xilinx SP605 x1 lane GEN1
card (featuring a XC6SLX45T Spartan-6 FPGA) [11] and the
ML605 x8 lane GEN1 card (featuring a XC6VLX240T Virtex-
6 FPGA) [12]. The transaction width of the PCIe wrapper is
set to 32 bits. We plan to extend it to 128 for the ML605 board
in order to exploit the higher bandwidth achievable with this
board when using DMA.

The following four application kernels were implemented
and tested as benchmarks:
• A compression component (used in the HPVis project)

which computes an output stream consisting of the max-
imum and minimum of each set of L consecutive 16-bit
values in the input stream. For replication factor R > 1, R
input values are processed at a time. (L is set at runtime.)

• A N-tap FIR filter which consumes R 16-bit input values
and produces R output values in parallel. (N is fixed at
synthesis time.)

• A 3×3 image blurring filter on 8-bit greyscale images. It
uses a very flexible Data Window similar to the method
described in [17]. The replication factor is not restricted.
Since we tested the filter up to R = 16, Rmax is set to
16 in Table III.

• A 3×3 Sobel filter (x and y direction) on 8-bit greyscale
images which converts the gradient to polar coordinates
and returns two values, magnitude and angle. The imple-
mentation is restricted to one PE, i. e. Rmax = 1, but
could be extended to use a flexible Data Window as Blur
above.

Table II presents the parameters of the used hardware plat-
forms. Note that the values for DMA transfers and the DMA
performance results in Table IV are estimated since – while
our PCIe wrapper implementation is running – the drivers do
not yet allow performance measurements. The transfer rates
were estimated by the method suggested in [20].Nevertheless
we tested the benchmarks for functional correctness with a
preliminary API implementation using single-word accesses
for stream transfers. The measured throughputs are shown in
the two rightmost columns of Table II. Obviously the protocol
overhead incurred for every single word significantly reduces
the transfer rates.

The application kernels’ parameters for determining the
optimal replication factor R are summarized in Table III.

Finally, Table IV shows the achieved performance (i. e.
replication factors, channel widths and transfer rates), the
speedup over a single-PE kernel (determined by throuhput
comparison), and the required FPGA area for DMA stream
transfers on the ML605 board. Note that for this board,
fsys = fuser = 125 MHz.

For FIR and Blur, the FIFOs are 128 bit (16 byte) wide on
both sides. Nevertheless the user logic cannot achieve its full
speed since the PCIe wrapper cannot produce and consume
128-bit packets every cycle. But since TPRtoF > TPPCI2F

and TPRfromF > TPF2PCI , the user logic can process data
from the PCIe interface as soon as it is available, i. e. the

TABLE IV
RESULTS ON ML605 BOARD USING DMA TRANSFERS.

Kernel R CWRtoF TPRtoF CWRfromF TPRfromF Speedup A

Compression 4 8 954 MB/s 16 95 MB/s 4.0 105
FIR 8 16 1907 MB/s 16 1907 MB/s 4.6 37
Blur 16 16 1907 MB/s 16 1907 MB/s 9.2 321
Sobel 1 1 119 MB/s 2 238 MB/s 1.0 453

given PCIe bandwidth is optimally used.
The other kernels would benefit from implementations with

higher Rmax since they cannot consume or produce data as
fast as the PCIe wrapper does. But note that, for Compression,
the FIFO inputs and outputs to the FPGA are nearly balanced:
TPRtoF ≈ TPPCI2F . The FIFO port on the user logic side
is only 64 bit (8 byte) wide, but consumes data every cycle,
while the PCIe wrapper produces 128-bit packets only about
every other cycle.

The results show that the computed parameters optimally
exploit the PCIe bandwidth. By parallelization, the PCIe
bandwidth and the streaming bandwidth of the application
kernels are aligned approximately. The parallel kernels achieve
a speedup of up to 9.2 over the single-PE versions, and the
area of the circuits is well within the available FPGA area.
Faster PCIe interfaces will allow even more parallelism and
higher speedups.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel framework for implementing portable
and scalable applications on standard PCs with and without
PCIe-based FPGA boards. It consists of hardware implemen-
tation rules, a communication API along with corresponding
hardware wrappers, and a method to automatically select an
application’s optimal replication factor R for a given hardware
platform. Experimental results show the feasibility of our
approach.

After finishing the PCIe driver supporting DMA, we will
implement the memory access functions. In the future, the
automatic optimization method will be extended as follows:
(1) consider memory bandwidth as well, and (2) allow more
hardware parameters, e. g. two replication factors to represent
two-dimensional PE arrays or a pipelining factor to vary
the number of pipeline stages in a design. Combined with
a parameter representing the speed of an FPGA, the latter
extension would allow us to better exploit the maximum
performance of a given FPGA type. Furthermore, we plan to
automatically extract some of the parameters from the VHDL
designs and to support more hardware platforms, possibly
including other FPGA vendors. Another important issue is
to explore possibilities for direct communication between
an FPGA board and other PCIe devices, e. g. GPUs, thus
further reducing the communication overhead for visualization
applications.

ACKNOWLEDGEMENT

This work is supported by the European Regional Develop-
ment Fund and the Lower Saxony State Government/Germany
in the research project HPVis: High-Performance Processing
and Visualization of High-Volume Data (Hochperformante
Verarbeitung und Visualisierung von Massendaten).

REFERENCES

[1] C. Bobda, Introduction to Reconfigurable Computing. Springer, 2010.
[2] D. D. Gajski, N. D. Dutt, A. Wu, and S. Lin, High-Level Synthesis:

Introduction to Chip and System Design. Kluwer, 1992.
[3] J. M. P. Cardoso, P. Diniz, and M. Weinhardt, “Compiling for reconfig-

urable computing: A survey,” ACM Computing Surveys, vol. 42, no. 4,
June 2010.

[4] T. El-Ghazawi, “The challenges of computing with FPGAs,” May 2011,
Keynote speech at Reconfigurable Architecture Workshop (RAW 2011,
Anchorage/USA) and personal communication.

[5] R. Budruk, D. Anderson, and T. Shanley, PCI Express System Architec-
ture. Addison Wesley, 2004.

[6] J. Dongarra and M. Walker, “MPI: A Standard Message Passing Inter-
face,” Supercomputing, vol. 12, no. 1, Jan. 1996.

[7] T. El-Ghazawi, E. El-Araby, and M. Huang, “The promise of high-
performance reconfigurable computing,” IEEE Computer, February
2008.

[8] O. Lindtjorn, R. Clapp, O. Pell, O. Mencer, M. J. Flynn, and H. Fu,
“Beyond traditional microprocessors for geoscience high-performance
computing applications,” IEEE Micro, March/April 2011.

[9] SRC Computers LLC, “Reconfigurable MAP processors,” www.src
computers.com.

[10] P. Saha, E. El-Araby, M. Huang, M. Taher, S. Lopez-Buedo, T. El-
Ghazawi, C. Shu, K. Gaj, A. Michalski, and D. Buell, “Portable library
development for reconfigurable computing systems: A case study,”
Parallel Computing - Systems & Applications, May 2008.

[11] “Spartan-6 FPGA SP605 Evaluation Kit,” www.xilinx.com.
[12] “Virtex-6 FPGA ML605 Evaluation Kit,” www.xilinx.com.
[13] “XAPP1052 - Bus Master Performance Demonstration Reference De-

sign for the Xilinx Endpoint PCI Express Solutions,” www.xilinx.com.
[14] R. Bittner, “Speedy bus mastering PCI Express,” in Proc. 22nd Int. Conf.

on Field Programmable Logic and Applications (FPL 2012), Aug. 2012.
[15] M. Jacobson and R. Kastner, “RIFFA 2.0: a reusable integration

framework for FPGA accelerators,” in Proc. 23rd Int. Conf. on Field
Programmable Logic and Applications (FPL 2013), September 2013.

[16] M. King, A. Khan, A. Agarwal, and O. Arcas, “Generating infrastructure
for FPGA-accelerated applications,” in Proc. 23rd Int. Conf. on Field
Programmable Logic and Applications (FPL 2013), September 2013.

[17] M. Huang, O. Serres, S. Lopez-Buedo, T. El-Ghazawi, and G. Newby,
“An image processing architecture to exploit I/O bandwidth on reconfig-
urable computers,” in Proc. 4th Southern Conf. on Programmable Logic,
2008.

[18] M. Huang, O. Serres, T. El-Ghazawi, and G. Newby, “Parameterized
hardware design on reconfigurable computers: An image processing case
study,” International Journal on Reconfigurable Computing, 2010.

[19] B. Lang, “Self arbitrating elements for modelling systolic dataflow in
field programmable gate arrays,” in GI/ITG-Workshop Anwenderpro-
grammierbare Schaltungen, Karlsruhe, Germany, July 1994.

[20] A. Goldhammer and J. A. Jr., “WP350 - Understanding Performance of
PCI Express Systems,” 2008, www.xilinx.com.

